



## Linear bearings

Linear bearings, linear bearing units, precision shafts, support rails, shaft support blocks and standard housings

Catalog

# Schaeffler linear guide systems

## Product portfolio

Linear guide systems are used in a variety of applications in a wide variety of industries. The guidance principle consists of three elements: linear ball bearings, bearing housings and precision shafts. Due to the wide range of diameters in combination with the different types of bearings, housings and shafts, shaft guidance systems offer maximum design freedom while simultaneously making handling and usage easy.

The catalog consists of two parts and combines the SCHAEFFLER and EWELLIX product ranges.



### Range A: Shaft guidance systems

Linear bearings and linear bearing units

Ball bearings and plain bearings

Compact series

Heavy-duty series

Solid series

SCHAEFFLER



Shaft guidance systems  
Linear bearings, linear bearing units, solid shafts, hollow shafts, support rails and shaft support blocks  
Catalog

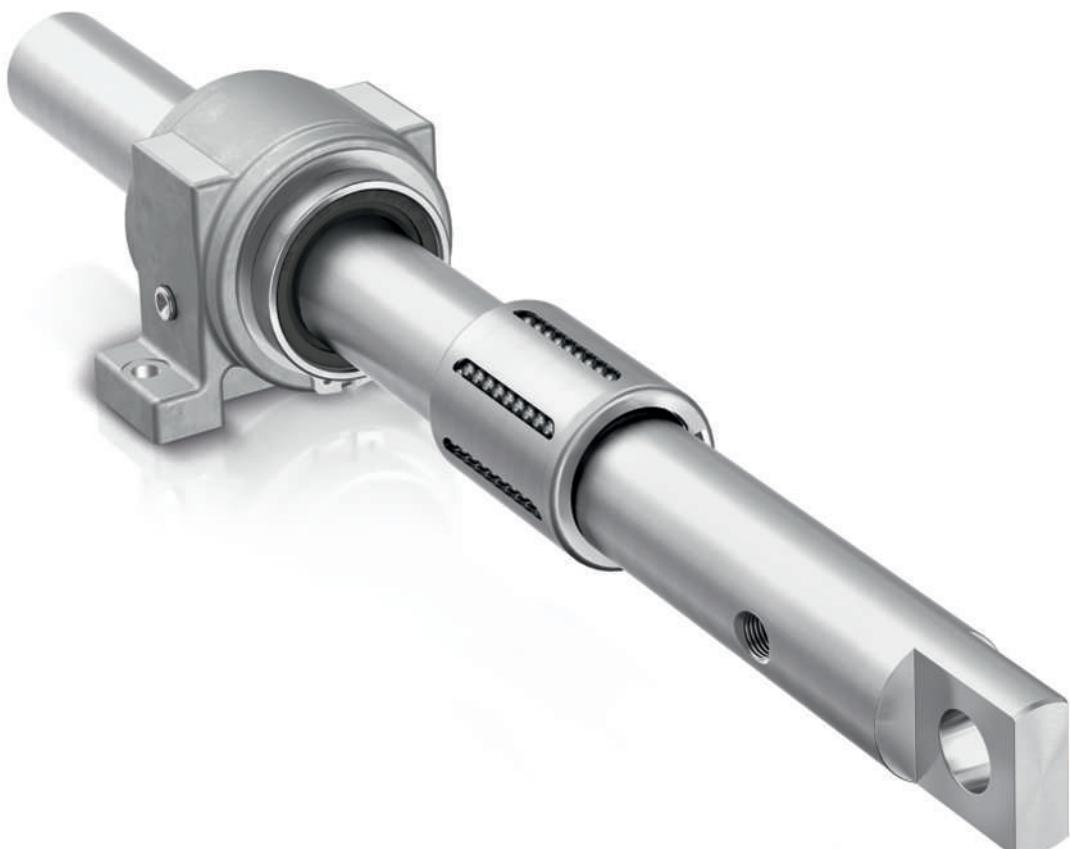


### Range B: Linear bearings

Linear bearings and linear bearing units

Ball bearings and plain bearings

Compact series


Standard series

SCHAEFFLER



Linear Bearings  
Linear ball bearings, linear ball bearing units, linear plain bearings, linear plain bearing units, shaft blocks, precision shafts and standard housings  
Catalog





## Shaft guidance systems

Linear bearings, linear bearing units, solid shafts, hollow shafts, support rails and shaft support blocks

Catalog



# Contents

|        |                                                                                   |    |
|--------|-----------------------------------------------------------------------------------|----|
| 1      | Technical principles .....                                                        | 6  |
| 1.1    | Load rating and rating life .....                                                 | 6  |
| 1.1.1  | Basic rating life .....                                                           | 6  |
| 1.1.2  | Service life .....                                                                | 6  |
| 1.1.3  | Static safety factor .....                                                        | 7  |
| 1.1.4  | Influence of the shaft raceway on the load rating .....                           | 7  |
| 1.1.5  | Load direction and orientation of the ball rows .....                             | 8  |
| 1.1.6  | Load ratings for linear ball bearings .....                                       | 9  |
| 1.1.7  | Load ratings for linear ball bearing units .....                                  | 9  |
| 1.1.8  | Load direction factors .....                                                      | 10 |
| 1.1.9  | Misalignment of the shaft .....                                                   | 14 |
| 1.1.10 | Compensation of angle errors in the heavy-duty series .....                       | 15 |
| 1.2    | Friction .....                                                                    | 15 |
| 1.3    | Lubrication .....                                                                 | 15 |
| 1.3.1  | Grease or oil lubrication .....                                                   | 16 |
| 1.3.2  | Initial greasing and service life .....                                           | 16 |
| 1.3.3  | Relubrication of linear ball bearings in housings .....                           | 17 |
| 1.3.4  | Lubricating nipple for housing .....                                              | 17 |
| 1.3.5  | Use in special environments .....                                                 | 18 |
| 1.4    | Bearing design .....                                                              | 19 |
| 1.4.1  | Linear bearings .....                                                             | 19 |
| 1.4.2  | Linear bearing units .....                                                        | 19 |
| 1.4.3  | Sealing .....                                                                     | 20 |
| 1.4.4  | Lubrication .....                                                                 | 20 |
| 1.4.5  | Operating temperature .....                                                       | 21 |
| 1.4.6  | Areas of application .....                                                        | 21 |
| 1.4.7  | Suffix .....                                                                      | 21 |
| 1.4.8  | Design of the adjacent construction .....                                         | 21 |
| 1.5    | Installation .....                                                                | 24 |
| 1.5.1  | Aligning the bearings and shafts .....                                            | 24 |
| 1.5.2  | Setting the operating clearance .....                                             | 26 |
| 2      | Linear ball bearings and linear ball bearing units of the compact series .....    | 29 |
| 2.1    | Product design .....                                                              | 29 |
| 2.2    | Product tables .....                                                              | 31 |
| 2.2.1  | Explanations .....                                                                | 31 |
| 2.2.2  | Linear ball bearing KH .....                                                      | 32 |
| 2.2.3  | Linear ball bearing units KGHA .....                                              | 34 |
| 2.2.4  | Linear ball bearing units KGHK .....                                              | 36 |
| 2.2.5  | Linear ball bearing units KTHK .....                                              | 38 |
| 3      | Linear ball bearings and linear ball bearing units of the heavy-duty series ..... | 40 |
| 3.1    | Product design .....                                                              | 40 |
| 3.2    | Product tables .....                                                              | 43 |
| 3.2.1  | Explanations .....                                                                | 43 |
| 3.2.2  | Linear ball bearings KS, KSO .....                                                | 44 |
| 3.2.3  | Linear ball bearing units KGSNG, KGSNS .....                                      | 46 |
| 3.2.4  | Linear ball bearing units KTSG .....                                              | 48 |
| 3.2.5  | Linear ball bearing units KGSNO, KGSNOS .....                                     | 50 |
| 3.2.6  | Linear ball bearing units KTSO .....                                              | 52 |
| 3.2.7  | Linear ball bearing units KGSC, KGSCS .....                                       | 54 |

---

|       |                                                                                        |     |
|-------|----------------------------------------------------------------------------------------|-----|
| 4     | Linear ball bearings and linear ball bearing units of the solid series.....            | 56  |
| 4.1   | Product design.....                                                                    | 56  |
| 4.2   | Product tables.....                                                                    | 60  |
| 4.2.1 | Explanations.....                                                                      | 60  |
| 4.2.2 | Linear ball bearings KB, KBS, KBO .....                                                | 62  |
| 4.2.3 | Linear ball bearing units KGB, KGBS, KGBO .....                                        | 66  |
| 4.2.4 | Linear ball bearing units KGBA, KGBAS, KGBAO .....                                     | 68  |
| 4.2.5 | Linear ball bearing units KTB.....                                                     | 70  |
| 4.2.6 | Linear ball bearing units KFB.....                                                     | 72  |
| 5     | Linear plain bearings and linear plain bearing units of the plain bearing series ..... | 74  |
| 5.1   | Product design.....                                                                    | 74  |
| 5.2   | Product tables.....                                                                    | 76  |
| 5.2.1 | Explanations.....                                                                      | 76  |
| 5.2.2 | Linear plain bearings PAB, PABO .....                                                  | 78  |
| 5.2.3 | Linear plain bearing units PAGBA, PAGBAO .....                                         | 80  |
| 6     | Solid shafts and hollow shafts .....                                                   | 82  |
| 6.1   | Product design.....                                                                    | 82  |
| 6.1.1 | Precision raceway for economical linear guides .....                                   | 83  |
| 6.1.2 | Steels, hardness, surface, tolerances, lengths .....                                   | 83  |
| 6.1.3 | Coatings.....                                                                          | 84  |
| 6.1.4 | Available materials, coatings, tolerances .....                                        | 85  |
| 6.1.5 | Solid shafts with threaded holes.....                                                  | 86  |
| 6.1.6 | Shafts according to customer requirements .....                                        | 88  |
| 6.1.7 | Shaft machining, shaft specification.....                                              | 92  |
| 6.2   | Product tables.....                                                                    | 95  |
| 6.2.1 | Explanations.....                                                                      | 95  |
| 6.2.2 | Solid shafts W .....                                                                   | 96  |
| 6.2.3 | Hollow shafts WH .....                                                                 | 97  |
| 6.3   | Order example, ordering designation .....                                              | 98  |
| 6.3.1 | Solid shaft, without machining .....                                                   | 98  |
| 6.3.2 | Hollow shaft, without machining .....                                                  | 98  |
| 6.3.3 | Solid shaft, with machining .....                                                      | 98  |
| 6.3.4 | Possible order for standard shafts with machining .....                                | 99  |
| 6.3.5 | Order examples.....                                                                    | 99  |
| 7     | Support rails.....                                                                     | 101 |
| 7.1   | Product design.....                                                                    | 101 |
| 7.1.1 | Multi-part support rails .....                                                         | 102 |
| 7.1.2 | Length tolerances for support rails .....                                              | 104 |
| 7.2   | Product tables.....                                                                    | 105 |
| 7.2.1 | Explanations.....                                                                      | 105 |
| 7.2.2 | Support rails TSNW .....                                                               | 106 |
| 7.2.3 | Support rails TSWW.....                                                                | 108 |
| 7.2.4 | Support rails TSWWA .....                                                              | 110 |
| 7.2.5 | Support rails TSUW .....                                                               | 112 |
| 7.2.6 | Support rails TSNW..-G4 .....                                                          | 114 |
| 7.3   | Order example, ordering designation .....                                              | 116 |
| 7.3.1 | Possible ordering designation for standard support rails .....                         | 116 |
| 7.3.2 | Support rail .....                                                                     | 116 |
| 8     | Shaft support blocks .....                                                             | 117 |

---

|       |                                              |     |
|-------|----------------------------------------------|-----|
| 8.1   | Product design.....                          | 117 |
| 8.2   | Product tables.....                          | 119 |
| 8.2.1 | Explanations.....                            | 119 |
| 8.2.2 | Shaft support blocks GWH..-B .....           | 120 |
| 8.2.3 | Shaft support blocks GW .....                | 122 |
| 8.2.4 | Shaft support blocks GWN..-B .....           | 124 |
| 8.2.5 | Shaft support blocks with flange FW..-B..... | 126 |

# 1 Technical principles

## 1.1 Load rating and rating life

The size of a linear ball bearing is determined by the requirements for its load capacity, rating life and operating reliability.

The load rating (load capacity) is described by the:

- Dynamic load rating  $C$
- Static load rating  $C_0$

The calculation of the dynamic and static load rating in the product tables is based on DIN 636-1:1993.

### 1.1.1 Basic rating life

The basic rating life  $L$  and  $L_h$  is reached or exceeded by 90 % of a sufficiently large quantity of the same bearings before the first signs of material fatigue occur.

f1

$$L = \left( \frac{C}{P} \right)^3$$

f2

$$L_h = \frac{833}{H \cdot n_{osc}} \cdot \left( \frac{C}{P} \right)^3$$

f3

$$L_h = \frac{1666}{\bar{v}} \cdot \left( \frac{C}{P} \right)^3$$

|           |                   |                                                |
|-----------|-------------------|------------------------------------------------|
| $C$       | N                 | Basic dynamic load rating                      |
| $H$       | m                 | Simple stroke length of the oscillating motion |
| $L$       | m                 | Basic rating life $L$ in 100,000 m             |
| $L_h$     | h                 | Basic rating life in operating hours           |
| $n_{osc}$ | $\text{min}^{-1}$ | Number of double strokes per minute            |
| $P$       | N                 | Equivalent dynamic load                        |
| $v_m$     | m/min             | Medium speed                                   |

### 1.1.2 Service life

The service life is the actual rating life achieved for a shaft guidance system. It may differ significantly from the calculated rating life.

Premature failure due to wear or fatigue can result from:

- Misalignment between the shafts or the guide elements
- Contamination
- Insufficient lubrication
- Oscillating movements with very small strokes (brinelling)
- Vibrations at a standstill (brinelling)

Due to the variety of installation conditions and operating conditions, it is not possible to determine the service life of a shaft guidance system exactly in advance. The safest way to accurately estimate the service life is to compare it with similar installation cases.

### 1.1.3 Static safety factor

The static safety factor  $S_0$  indicates the security with regard to impermissible permanent deformation in the bearing and is determined using the following formula:

$f_4$

$$S_0 = \frac{C_0}{P_0}$$

|       |   |                                                      |
|-------|---|------------------------------------------------------|
| $C_0$ | N | Static load rating of the load direction             |
| $P_0$ | N | Static equivalent bearing load of the load direction |
| $S_0$ | - | Static load safety factor                            |



For linear ball bearings, KH must be  $S_0 \geq 4$ .

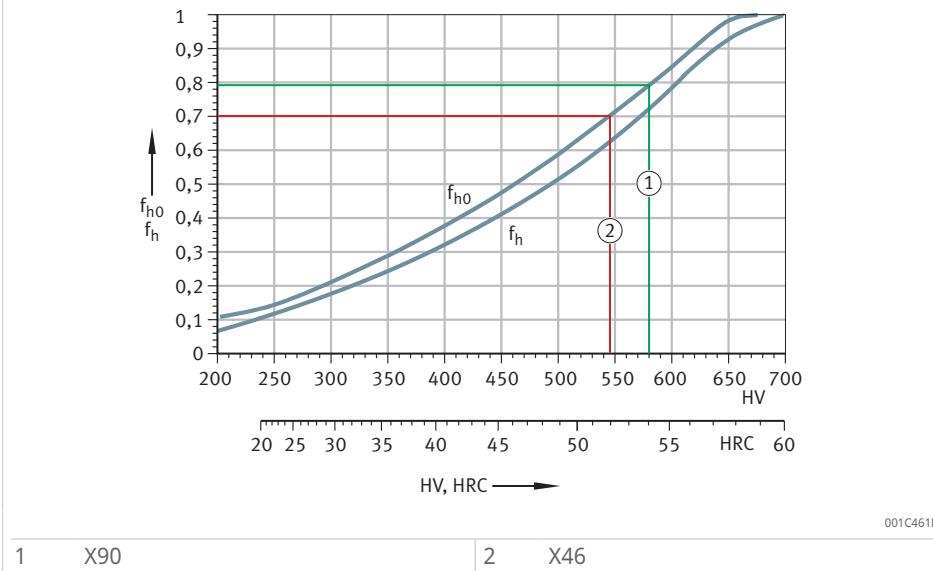
$S_0 \geq 2$  is considered permissible with regard to running accuracy and smooth running. For  $S_0 < 2$ , please contact us for advice.

### 1.1.4 Influence of the shaft raceway on the load rating

The load ratings in the product tables apply only if a ground (Ra 0.3) and hardened shaft (minimum 670 HV) serves as a raceway.

#### 1.1.4.1 Deviating hardness of the raceway

If shafts with a surface hardness lower than 670 HV are used (e.g. shafts made of X46 or X90), a hardness factor must be taken into account.


$f_5$

$$C_H = f_H \cdot C$$

$f_6$

$$C_{0H} = f_{H0} \cdot C_0$$

1 Static and dynamic hardness coefficients for reduced raceway hardness

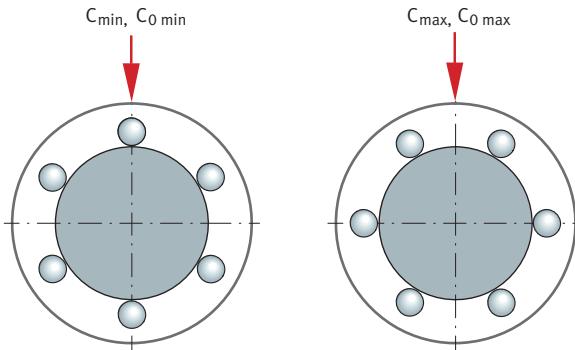


|          |   |                               |
|----------|---|-------------------------------|
| C        | N | Basic dynamic load rating     |
| $C_H$    | N | Effective dynamic load rating |
| $C_0$    | N | Basic static load rating      |
| $C_{0H}$ | N | Effective static load rating  |
| $f_H$    | - | Dynamic hardness factor       |
| $f_{H0}$ | - | Static hardness factor        |
| HV, HRC  | - | Surface hardness              |

### 1.1.5 Load direction and orientation of the ball rows

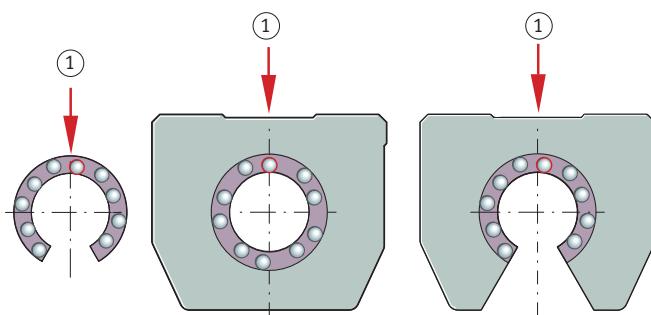
The effective load rating of a linear ball bearing depends on the orientation of the load direction relative to the position of the ball rows:

- The lowest load ratings  $C_{\min}$  and  $C_0 \min$  occur in the apex position
- The highest load ratings  $C_{\max}$  and  $C_0 \max$  occur in the symmetry position


If the bearings are installed in a directional position, the maximum load rating can be used. If it is not possible to install in a directional position or if the load direction is not defined, the minimum load ratings must be assumed.

#### 1.1.5.1 Main load direction

For linear ball bearings and linear ball bearing units for which the installation position of the ball rows is defined, the load ratings  $C$  and  $C_0$  are specified in the main load direction. For different load directions, the effective load ratings can be determined using the load direction factors.


If the installation position of the ball rows is not defined, the minimum load capacities are specified.

② Load rating, depending on the position of the ball rows



00008B47

③ Main load direction for bearings and units



0018FB1B

1 Main load direction

### 1.1.6 Load ratings for linear ball bearings

The load ratings in the product tables are defined as follows:

- For KH, KS, KB and KBS, the minimum and maximum load ratings apply ►9|②
- For KSO and KBO, the load ratings in the main load direction apply. For different load directions, the diagrams ►10|④ to ►13|⑯ apply

### 1.1.7 Load ratings for linear ball bearing units

The load ratings in the product tables are defined as follows:

#### Compact series

For units KGHK and KTHK, the minimum load rating applies.

#### Heavy-duty series

For the heavy-duty series, the load rating in the main load direction applies. For different load directions, the diagrams ►12|⑩ to ►12|⑬ apply.

#### Solid series

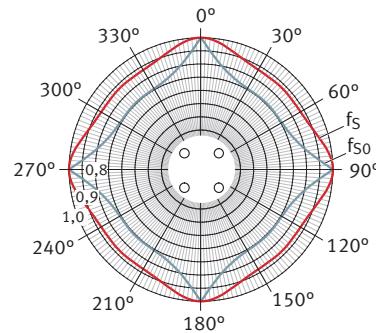
For units KGB, KGBA, KTB, KGBS, KGBAS, the minimum load rating applies.

For the open units KGBO and KGBAO, the load rating in the main load direction applies. For different load directions, the diagrams ►13|⑯ and ►13|⑯ apply.

### 1.1.8 Load direction factors

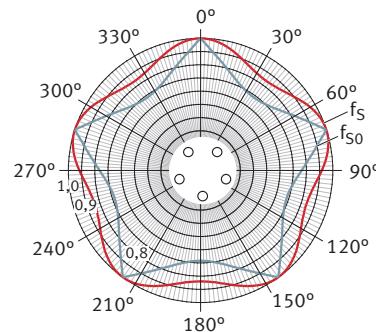
The load direction factors shown in the diagrams take the following formulas into account:

$f_7$


$$C_w = f_s \cdot C$$

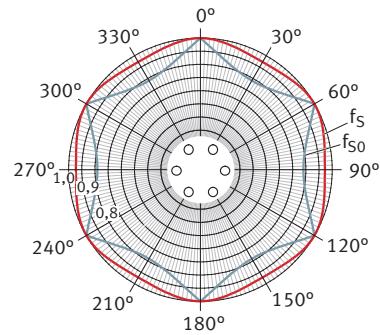
$f_8$

$$C_{0w} = f_{s0} \cdot C_0$$

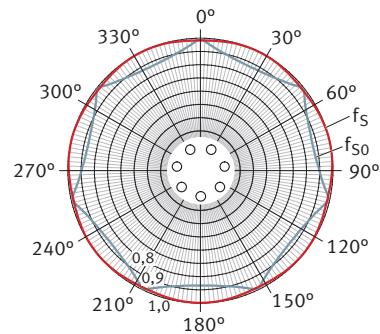

|          |   |                                        |
|----------|---|----------------------------------------|
| $C$      | N | Basic dynamic load rating              |
| $C_0$    | N | Basic static load rating               |
| $C_{0w}$ | N | Effective static load rating           |
| $C_w$    | N | Effective dynamic load rating          |
| $f_s$    | - | Dynamic load factor for load direction |
| $f_{s0}$ | - | Static load factor for load direction  |

④ Compact series load direction factor for KH06, KH08, KH10

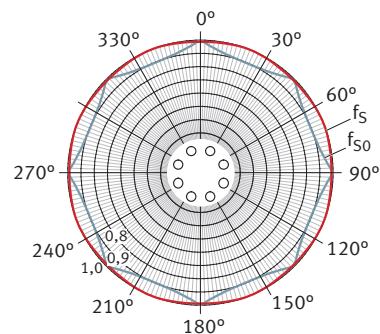



0001AC74

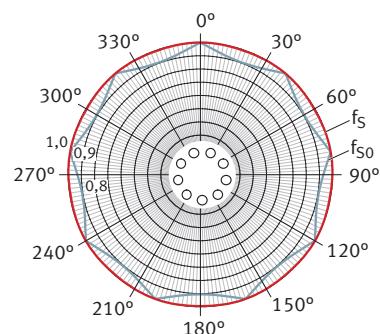
⑤ Compact series load direction factor for KH12, KH14, KH16



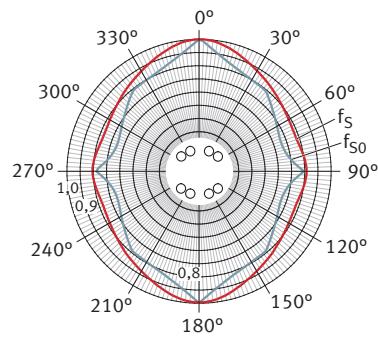

0001AC75


④6 Compact series load direction factor for KH20, KH25

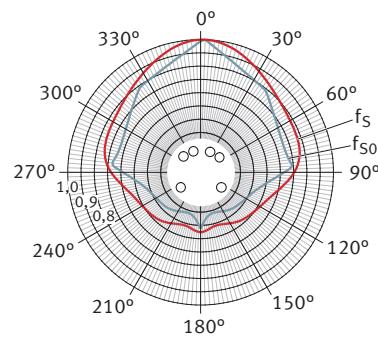



④7 Compact series load direction factor for KH30

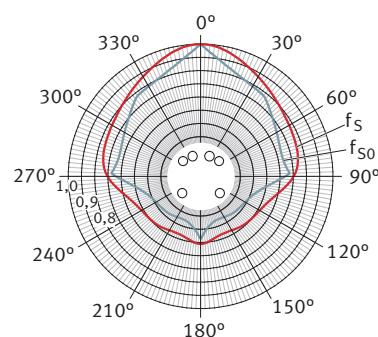



④8 Compact series load direction factor for KH40

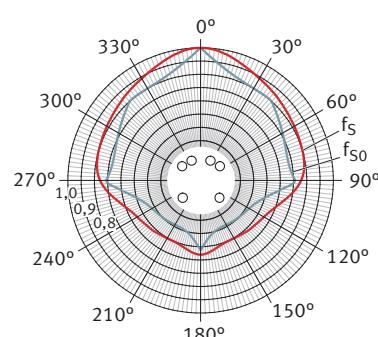



④9 Compact series load direction factor for KH50

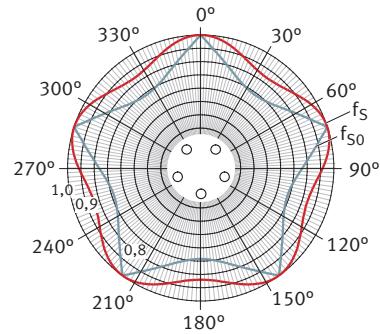



□ 10 Heavy-duty series load direction factor for KS12, KS16, KS20, KS25, KS30, KS40, KS50



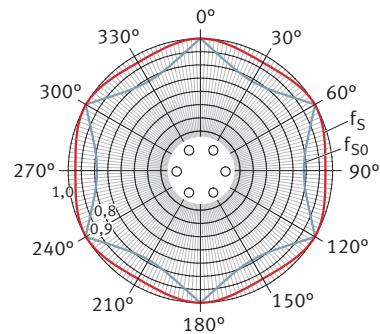

□ 11 Heavy-duty series load direction factor for KSO12, KSO16




□ 12 Heavy-duty series load direction factor for KSO20, KSO25

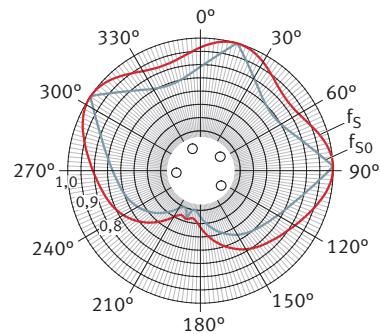


□ 13 Heavy-duty series load direction factor for KSO30, KSO40, KSO50



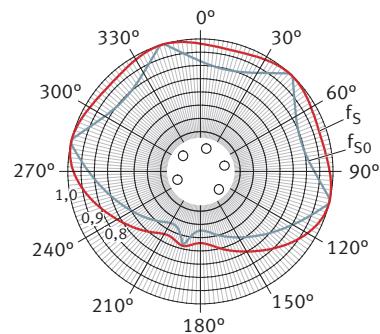

④14 Solid series load direction factor for KB12, KB16




0001AC9F

④15 Solid series load direction factor for KB20, KB25, KB30, KB40, KB50




0001ACA0

④16 Solid series load direction factor for KBO12, KBO16



0001ACA1

④17 Solid series load direction factor for KBO20, KBO25, KBO30, KBO40, KBO50



0001ACA2

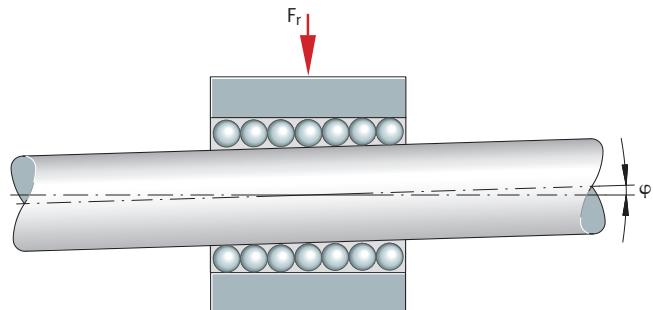
### 1.1.9 Misalignment of the shaft

The running quality and service life of the linear ball bearings are impaired by misalignment of the shaft. For this reason, guides with one shaft should have at least 2 bearings; guides with 2 shafts should have at least 3 bearings.

#### 1.1.9.1 Load factors for misalignment

Due to shaft deflections, misalignment cannot always be avoided. If this is the case, load factors for the misalignment must be taken into account.

J19

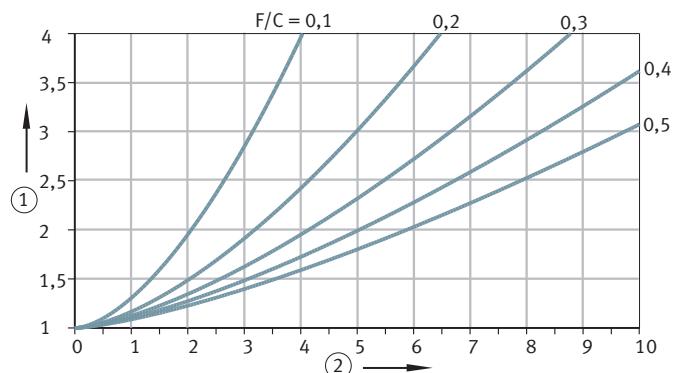

$$P = K_F \cdot F_r$$

J10

$$P_0 = K_{F0} \cdot F_r$$

|               |   |                                                |
|---------------|---|------------------------------------------------|
| $C, C_0$      | N | Dynamic or static load rating                  |
| $F_r$         | N | Maximum radial bearing load                    |
| $K_F, K_{F0}$ | - | Dynamic or static load factor for misalignment |
| $P, P_0$      | N | Equivalent dynamic or static load              |

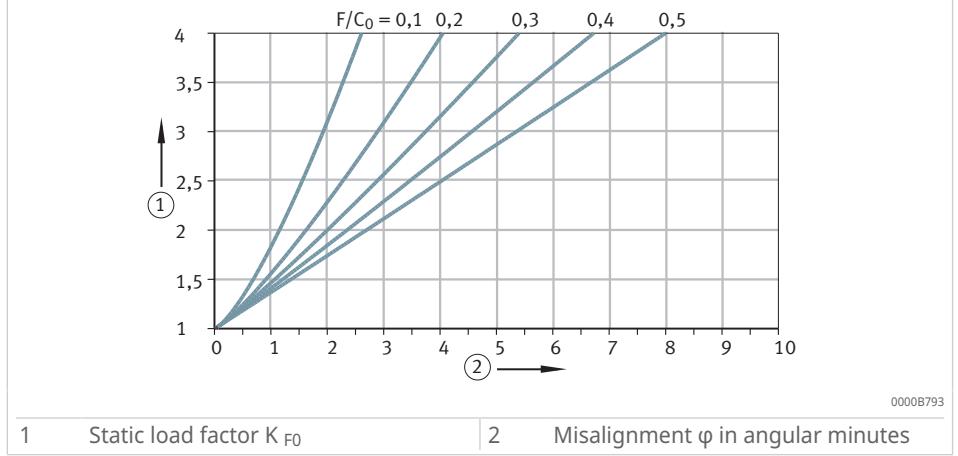
#### 18 Misalignment $\varphi$ of the shaft




00008B19

Fr Radial load

φ Misalignment


#### 19 Dynamic load factor when the shaft is misaligned



0018FB2C

1 Dynamic load factor  $K_F$ 2 Misalignment  $\varphi$  in angular minutes

④ 20 Static load factor when the shaft is misaligned



### 1.1.10 Compensation of angle errors in the heavy-duty series

Linear ball bearings KS and KSO and linear ball bearing units with these bearings are self-adjusting. They compensate for misalignments up to  $\pm 40$  Winkelminute without impairing the load rating.

## 1.2 Friction

Linear ball bearings are often used in situations that require high positioning accuracy and efficiency. The bearings must therefore run smoothly and with only low friction.

Linear ball bearings KS, KSO, KB, KBS and KBO offer particularly low friction.

The total friction results from:

- Rolling friction and sliding friction in the contact zones (sliding friction in linear plain bearings)
- Friction in the deflection zones and returns
- Lubricant friction
- Seal friction

The factors that determine the coefficient of friction also influence each other in part, act in one direction or work against each other.

For non-sealed linear ball bearings and oil lubrication, the coefficients of friction are as follows:

■ 1 Type series and coefficient of friction

| Designation  | Friction coefficient |
|--------------|----------------------|
| KH           | 0.003 – 0.005        |
| KS, KSO      | 0.001 – 0.0025       |
| KB, KBS, KBO | 0.001 – 0.0025       |

For linear plain bearings, the coefficient of friction is between 0.02 and 0.2.

## 1.3 Lubrication

Open linear ball bearings are preserved wet or dry and can be lubricated with grease or oil. The oily preservative is compatible with and can be mixed with mineral-oil-based lubricants, meaning that it is usually not necessary to wash out the bearings before installation.

Dry-preserved bearings must be greased or oiled immediately after being removed from the packaging.

### 1.3.1 Grease or oil lubrication

Grease lubrication is preferable to oil lubrication, as the grease remains in the bushing and thus prevents dirt from entering. This sealing effect protects the rolling elements against corrosion.

In addition, the design effort required for grease lubrication is less than for oil lubrication, as the sealing can be less complex.

Lubricating greases for linear ball bearings have the following properties:

- Lithium or lithium complex soap
- Base oil on a mineral oil basis or polyalphaolefin (PAO)
- Special wear protection additives for loads C/P 8, marked with "P" in the DIN designation KP2K-30
- Consistency as per NLGI class 2 according to DIN 51818.

Oil lubrication is preferred if heat is to be dissipated and dirt is to be removed by the lubricant.

This advantage is offset by the increased design effort (lubricant supply, sealing).

Depending on the load, we recommend the following lubricating oils:

- For low to medium loads (C/P > 15):
  - Hydraulic oils HL according to and lubricating oils CL according to DIN 51517:2018 in the viscosity range ISO VG 10 to ISO VG 22
- For high loads (C/P 8):
  - Hydraulic oils HLP according to and lubricating oils CLP according to DIN 51517:2018 in the viscosity range ISO VG 68 to ISO VG 100.

### 1.3.2 Initial greasing and service life

Experience has shown that the service life is achieved when using bearings in normal ambient conditions (C/P > 10), at room temperature and  $v \leq 0.6 \cdot v_{max}$  with the initial greasing. If these conditions are not possible, relubrication is required.

Sealed linear ball bearings are already sufficiently greased on delivery, so that maintenance-free operation is achieved in many applications.

#### 1.3.2.1 Performing initial greasing and relubrication of the bearing

The initial greasing and relubrication of linear ball bearings without seals and relubrication holes must be carried out via the shaft. Make sure that all rolling elements in circulation come into contact with grease. To ensure this, the bushing must be moved over at least twice the bearing length during the relubrication process.

When first greasing the bearing with the shaft fitted, add lubricant until it escapes from the bearing.

For linear ball bearings KH, KS..-PP-AS and the plain bearing PAB..-PP-AS, relubrication is possible through holes or recesses in the retaining ring or outer ring.



Linear bearings and linear bearing housing units are to be relubricated when the shaft is assembled.

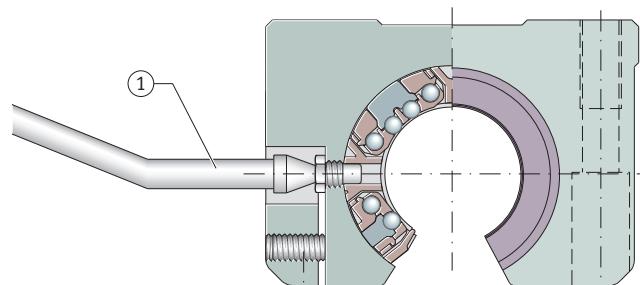
### 1.3.2.2 Relubrication interval

The relubrication period depends on a wide range of operating conditions such as load, temperature, speed, stroke, lubricant, environmental influences and the installation position.



Exact lubrication intervals must be determined by testing under application conditions.

### 1.3.3 Relubrication of linear ball bearings in housings


If linear ball bearings are installed in a housing, special nozzle pipes may be required for relubrication. We are able to provide details of suppliers of nozzle pipes with suitable pointed mouthpieces upon request.

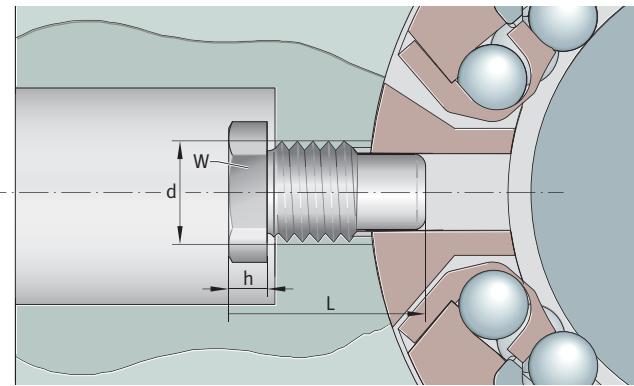
□21 Nozzle pipe



00008E58

□22 Relubrication with nozzle pipe




00008DCF

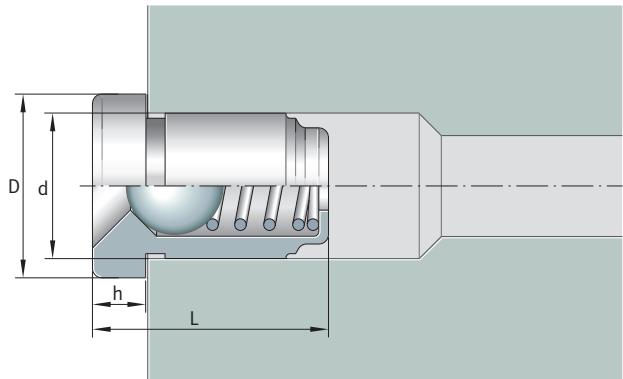
1 Nozzle pipe

### 1.3.4 Lubricating nipple for housing

Lubricating nipples NIP..MZ are suitable for housings in the heavy-duty series KS.

## □23 Lubricating nipples NIP..MZ for heavy-duty series KS




00019574

## ■2 Lubricating nipple

| Lubricating nipple | Width across flats | Dimensions |      |     |    |
|--------------------|--------------------|------------|------|-----|----|
|                    |                    | W          | d    | L   | h  |
|                    |                    |            | mm   | mm  | mm |
| NIP4MZ             | 5                  | M4         | 7.7  | 1.5 |    |
| NIP5MZ             | 6                  | M5         | 11.1 | 2   |    |
| NIP6MZ             | 7                  | M6         | 14.8 | 2.5 |    |

Lubricating nipples NIPA are suitable for housings of the compact series KH, solid series KB and plain bearing series PAB.

## □24 Lubricating nipples NIPA for compact series KH, solid series KB, plain bearing series PAB



000895C3

## ■3 Lubricating nipple

| Lubricating nipple | Dimensions |    |    |     |
|--------------------|------------|----|----|-----|
|                    | D          | d  | L  | h   |
|                    | mm         | mm | mm | mm  |
| NIPA1              | 6          | 4  | 6  | 1.5 |
| NIPA2              | 8          | 6  | 9  | 2   |

## 1.3.5 Use in special environments

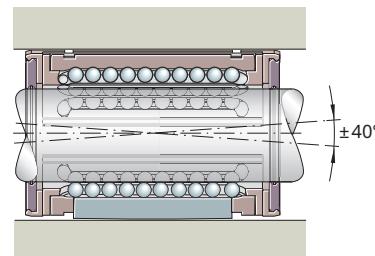
In vacuum applications, lubricants with low evaporation rates are required to maintain the vacuum atmosphere.

In the food industry and clean rooms, special requirements are also placed on lubricants with regard to emissions and compatibility. Please contact us for advice when working in such conditions.

## 1.4 Bearing design

Linear bearings and linear bearing units are available as a compact series, lightweight construction series, heavy-duty series, solid series and plain bearing series. The bearings handle high loads at a relatively low weight and enable linear guides with unlimited travel distances.

Each type series has very specific properties that make it particularly suited to certain applications. Such requirements include misalignment compensation, low-friction running, high acceleration and running speeds, and a long service life.


The modular and extended range provides the best technical and economic solution for bearings with shaft guidance systems for every requirement.

### 1.4.1 Linear bearings

Linear ball bearings and linear plain bearings can be closed or open. The open design has a segment cutout and is intended for supported shafts. With several series, the radial clearance can be set for clearance-free or preloaded guides when used together with the corresponding housing.

Misalignment can be caused by tolerance errors, mounting errors or inaccuracies in the adjacent construction. Linear ball bearings in the KS and KSO series compensate for static misalignment of up to  $\pm 40^\circ$

□ 25 Compensation for misalignment KS



001CD0B4

The self-adjusting properties enable the balls to run smoothly into the loaded zone, which also makes the load distribution more even across the entire row of balls. This results in smoother running, allows higher accelerations and prevents the overloading of individual balls.

Overall, this results in higher achievable loads and a longer service life for the bearings; it may even be possible to use smaller and more cost-effective dimensioning for the adjacent construction.



To achieve the full load ratings according to the product table, the shaft bearing surface must be hardened (670 HV + 165 HV) and ground.

### 1.4.2 Linear bearing units

Linear ball bearings and linear plain bearings are also supplied as complete bearing units together with INA housings. A radial fastening screw secures the bearing in the housing to prevent axial displacement.

The housings are made of a rigid and high-strength aluminum alloy, which enables the full load rating of the mounted bearings. The solid series also includes housings made of die-cast iron.

Due to their comparatively low total mass, the units are particularly suitable for weight-reduced constructions with high loads and when higher accelerations and running speeds are required.

Threaded holes or countersunk holes in the housing allow easy screw attachment to the adjacent construction (if necessary, also from below).

The housings have a stop edge for quick alignment. This prevents the linear bearings from twisting when the housings are installed.

Center holes allow quick, additional pinning of the housing to the adjacent construction.

Since they are manufactured in series production at high quantities, the price of the complete units is usually considerably more economical than customer-specific designs.

#### 1.4.2.1 Housing versions

The housing is available in closed, segment cut-out, open, slotted and tandem versions (with and without centering collar).

The closed version enables the straightforward implementation of precision standard guides with a fixed enveloping circle.

Open versions with segment cut-out are used when the shaft must be supported for long guides and the bearing needs to be very stiff.

Closed versions and versions with segment cut-out are also supplied in a slotted version in several series. Slotted versions are suitable for clearance-free or preloaded guides. The operating clearance is adjusted using an adjusting screw.

The tandem version features two linear bearings. This gives the units high load-bearing properties.

Tandem ball bearing units are available in closed and open versions. Both variants are also supplied in the above-mentioned design with slots.

For special applications, we provide a tandem version with a centering collar for mounting holes in accordance with H7.

#### 1.4.3 Sealing

The bearings are available in an open design and with contact seals on both sides (suffix PP). The KH and KB linear bearings have seals with two sealing lips on the front; the outer lip prevents dirt from entering, the inner lip keeps the lubricant in the bearing. The linear bearings of the type KS have contact seals with a sealing lip.

#### 1.4.4 Lubrication

The initial lubrication with a high-quality grease and the integrated lubricant reservoir mean that linear bearings are maintenance-free for many applications. They can, however, be relubricated if necessary.

Depending on the version, linear ball bearings can be lubricated via the openings in the outer ring or radial holes arranged in the center of the bearing.

On the units, lubrication is carried out via separate lubricating nipples in the housing. The fixing of the bearing in the housing and the relubrication devices therefore are separated from each other.

Bearings and units with the suffix AS can be relubricated.

#### 1.4.5 Operating temperature

Bearings and housings can be used at operating temperatures from -30 to +80.

#### 1.4.6 Areas of application

The table shows the areas of application for linear bearings.

If the dependencies between bearing size and bearing design, load, operating clearance, bearing fastening and lubrication have been checked, higher values may be possible in individual cases. In this case, please contact us.



Linear bearing units are classified according to the installed linear bearing.

#### 4 Dynamic values of the linear bearings

| Acceleration, speed |                  | Series of linear bearings |      |      |      |
|---------------------|------------------|---------------------------|------|------|------|
|                     |                  | KH                        | KB   | KS   | PAB  |
| Acceleration        | m/s <sup>2</sup> | 50                        | 50   | 100  | 50   |
| Speed               | m/s              | 2                         | to 5 | to 5 | to 3 |

For linear ball bearings with a seal (suffix PP), speeds of up to 2 m/s are permissible.

#### 1.4.7 Suffix

#### 5 Suffix of the available versions

| Suffix | Description                                          | Design     |
|--------|------------------------------------------------------|------------|
| PP     | Lip seal on both sides                               | Standard   |
| PPL    | Longitudinal seals for bearings with segment cut-out | On request |
| AS     | Bearing and unit can be relubricated                 | Standard   |

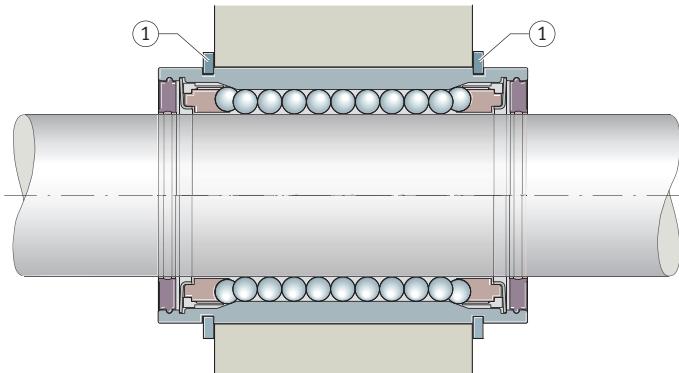
#### 1.4.8 Design of the adjacent construction

Good running behavior of the shaft guidance systems is not solely dependent on the bearings. The form tolerances and positional tolerances of the adjacent construction also have a major influence on this.

The more precisely the adjacent construction is manufactured and the more precisely it has been mounted, the better the running behavior.

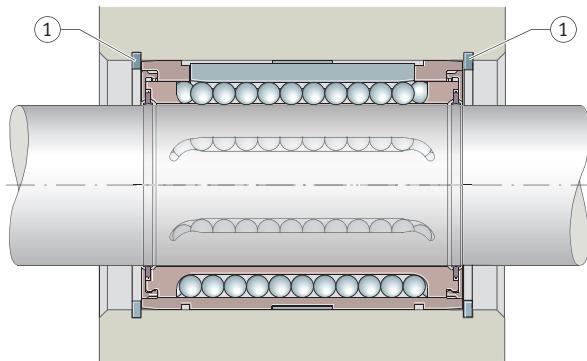
##### 1.4.8.1 Fastening

Linear ball bearings KH and KH..-PP are pressed into the housing bore. They are thus fixed radially and axially. No additional measures are required.


Linear ball bearings KB and KS and plain bearings PAB must be fixed axially.

Linear ball bearings KB and plain bearings PAB can be secured with snap rings or by the adjacent construction.

Linear ball bearings KS can be fixed with snap rings in the housing bore and with snap rings in the housing shoulder.


! The series KS should not be secured using shaft snap rings. This can impair the function of the bearing.

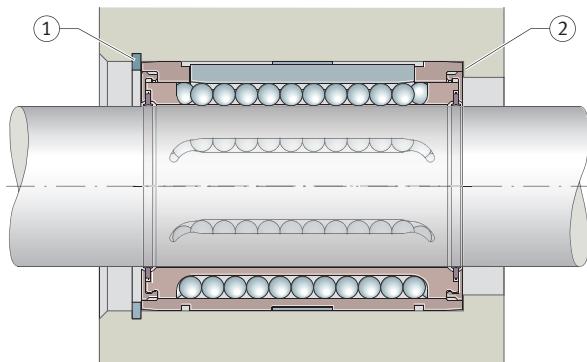
26 Snap rings in the grooves of the bearing



1 Snap rings

27 Snap rings in the housing bore

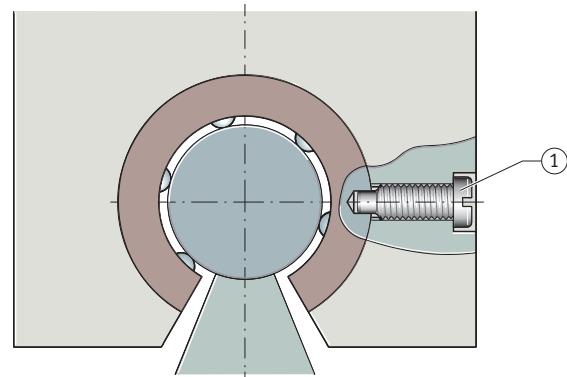



1 Snap rings

Linear ball bearings KBO and plain bearings PABO must be secured axially and radially.

These bearings have a fixing on the outside. A screw with a pin is preferred to secure the bearing. Threaded pins are also suitable.

! The fixing screw must not deform the bearing. The screw must be secured against loosening.


28 Snap ring and housing shoulder

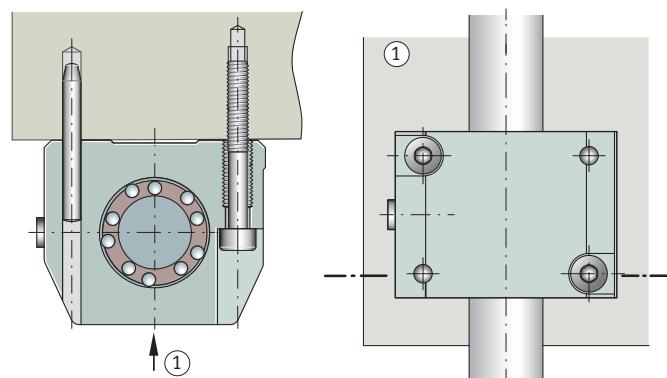


1 Snap ring

2 Housing shoulder

## ④ 29 Securing the bearing with a screw

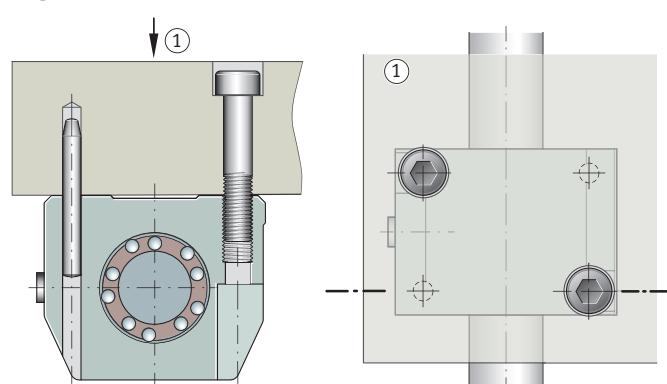



00008823

1 Locking screw with pin

Linear ball bearing units and linear plain bearing units are screwed using mounting holes.

Pinning of the units is necessary only in rare cases, but is easily done by drilling out the centering holes.


## ④ 30 Securing a unit from below



00008835

1 Bottom view

## ④ 31 Securing a unit from above



00019C25

1 Top view

## 1.4.8.2 Sealing

Clean raceways prevent premature shaft and bearing failure. Therefore, the bearing position should always be sealed.

Gap seals protect the bearings from coarse dirt. Contact seals protect against fine dirt and keep the grease in the bearing.

If the bearings and shaft are located in very aggressive environments, it is recommended that the guide is additionally protected using bellows or telescopic covers.



If the bearings and shaft are located in very aggressive environments, it is recommended that the guide is additionally protected using bellows or telescopic covers.

### 6 Sealing of bearings and units

| Designation <sup>1)</sup> | Seal |          |              |
|---------------------------|------|----------|--------------|
|                           | Open | Gap seal | Contact seal |
| KH                        | ✓    | -        | ✓            |
| KS, KSO                   | -    | ✓        | ✓            |
| KB, KBO                   | -    | ✓        | ✓            |
| PAB, PABO                 | -    | -        | ✓            |

✓ available  
- not available

<sup>1)</sup> All linear bearing units have contact seals.

## 1.5 Installation

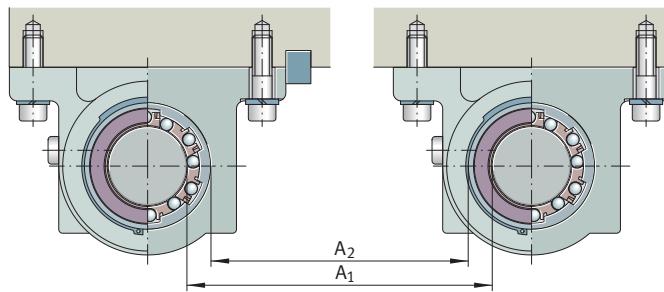
The bearings should not be taken out of the packaging until immediately before assembly. Dry-preserved bearings must be protected against corrosion immediately after removal.



The assembly area and the adjacent construction must be clean. Dirt impairs accuracy and shortens the service life of the guides.

The bearings must not be tilted.

For sealed bearings with segment cut-out, it must be ensured that the ends of the sealing lips are not turned inside out (see packing slip).

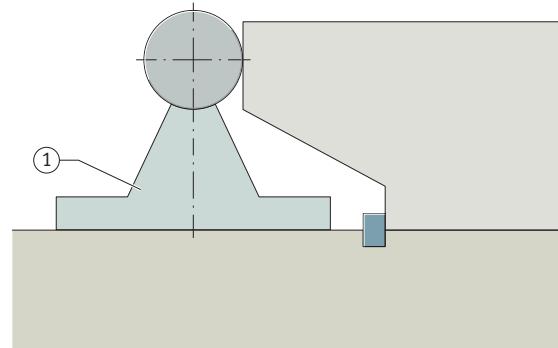

### 1.5.1 Aligning the bearings and shafts

Bearings arranged in succession should be aligned using a continuous shaft, set against a stop and then screwed tight.

Parallel bearings are aligned by measuring the distance between the shafts ( $A_1$ ) or between the outer bearing diameters ( $A_2$ ). This distance can also be defined using spacers.

Fix the first shaft (reference shaft) and screw it on. Align the second shaft by moving the slide and thus creating the required distance.

32 Alignment of parallel bearings



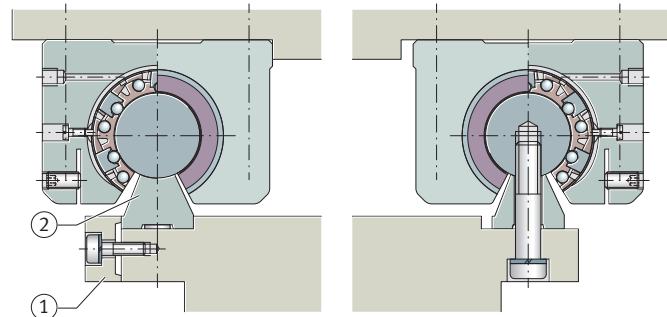

00008B24

A<sub>1</sub> Distance between the shaftsA<sub>2</sub> Distance between the outer bearing diameters

For very long guides with a supported shaft, first align a support rail over the shaft and screw in place step by step (reference shaft).

33 Alignment of a support rail over the shaft




00008B27

1 Support rail

Only one row of bearings in succession should be positioned without clearance or preloaded. Parallel bearings should have a larger operating clearance.

When using parallel support rails, clamp the reference rail against a stop.

34 Clamping of the reference rail with two TSUW support rails



00008B2A

1 Stopper

2 Reference rail

## 1.5.2 Setting the operating clearance

The operating clearance for linear bearings is determined by the shaft tolerance and housing tolerance.

The operating clearance of linear bearing units is either determined by the shaft or adjusted using the adjusting screw on slotted housings.

**!** When using non-rigid housings, tests are required to adjust the operating clearance in line with the housing tolerances and shaft tolerances.

### 1.5.2.1 Adjusting bearings to eliminate clearance

The operating clearance can be set for KBS linear ball bearings and slotted housings. For this, the screw must be adjusted until there is noticeable torsional resistance between the shaft and the bearing.

**!** Do not screw the adjusted bearing any further onto the shaft.

### 7 Tolerance and operating clearance

| Linear bearings and linear bearing units | Designation                    | Tolerance |      | Operating clearance   |
|------------------------------------------|--------------------------------|-----------|------|-----------------------|
|                                          |                                | Shaft     | Bore |                       |
| Compact series                           | KH                             | ►26   □8  |      |                       |
|                                          | KGHK, KTHK                     | h6        | -    | Normal                |
| Heavy-duty series                        | KS, KSO                        | h6        | H7   | Free from clearance   |
|                                          | KGSNG, KTSG, KGSNO, KTSO, KGSC | h6        | -    | Slight preload        |
|                                          | KGSNS, KGSNOS, KGSCS           | -         | -    | Adjustable with screw |
| Solid series                             | KB                             | ►26   □10 |      |                       |
|                                          | KBS, KBO                       |           |      |                       |
|                                          | KGB, KGBA, KTB, KGBO           | h6        | -    | ►27   □11             |
|                                          | KGBS, KGBAS, KGBAO             | -         | -    | Adjustable with screw |
| Plain bearing series                     | PAB, PABO                      | h7        | H7   | Normal                |
|                                          | PAGBA, PAGBAO                  | h7        | -    | Normal                |

### 1.5.2.2 Installation tolerances and operating clearance

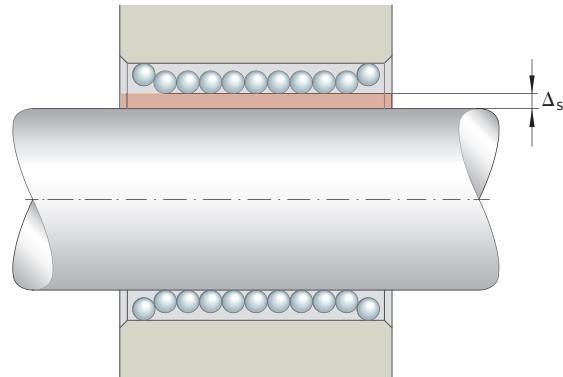
The theoretically possible operating clearance for the individual series:

### 8 Operating clearance for KH

| Installation tolerance |      | Operating clearance for all sizes |  |                                      |  |
|------------------------|------|-----------------------------------|--|--------------------------------------|--|
| Shaft                  | Bore |                                   |  |                                      |  |
| h6                     |      | H7, K7                            |  | Normal operating clearance           |  |
| j5                     |      | H6, K6                            |  | Operating clearance less than normal |  |

### 9 Operating clearance for KS, KSO

| Installation tolerance |      | Size and operating clearance |       |       |       |     |     |     |     |     |     |       |       |       |       |
|------------------------|------|------------------------------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-------|-------|-------|-------|
| Shaft                  | Bore | 12                           |       | 16    |       | 20  |     | 25  |     | 30  |     | 40    |       | 50    |       |
|                        |      | U                            | L     | U     | L     | U   | L   | U   | L   | U   | L   | U     | L     | U     | L     |
|                        |      | µm                           | µm    | µm    | µm    | µm  | µm  | µm  | µm  | µm  | µm  | µm    | µm    | µm    | µm    |
| h6                     | H6   | +36                          | -8    | +34   | -10   | +37 | -12 | +34 | -15 | +29 | -20 | +33   | -22   | +30   | -25   |
| h6                     | H7   | +44                          | -8    | +42   | -10   | +46 | -12 | +43 | -15 | +38 | -20 | +44   | -22   | +41   | -25   |
| h6                     | JS6  | +29                          | -14.5 | +27.5 | -16.5 | +29 | -20 | +26 | -23 | +21 | -28 | +23.5 | -31.5 | +20.5 | -34.5 |


## █ 10 Operating clearance for KB

| Installation tolerance |         | Size and operating clearance |   |     |    |     |    |     |    |     |    |     |    |     |    |
|------------------------|---------|------------------------------|---|-----|----|-----|----|-----|----|-----|----|-----|----|-----|----|
| Shaft                  | Bore    | 12                           |   | 16  |    | 20  |    | 25  |    | 30  |    | 40  |    | 50  |    |
|                        |         | U                            | L | U   | L  | U   | L  | U   | L  | U   | L  | U   | L  | U   | L  |
| h6                     | H6 (H7) | +19                          | 0 | +20 | -1 | +22 | -1 | +24 | -1 | +24 | -1 | +29 | -2 | +29 | -2 |

## █ 11 Operating clearance for KBS, KBO

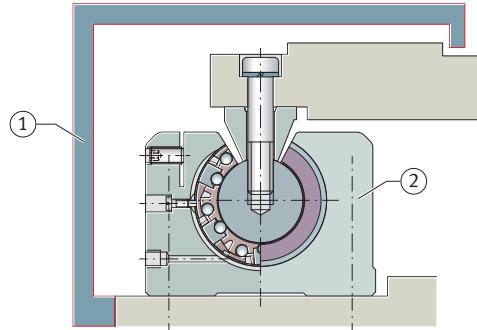
| Installation tolerance |      | Size and operating clearance |      |       |      |     |    |     |    |     |    |       |       |       |       |
|------------------------|------|------------------------------|------|-------|------|-----|----|-----|----|-----|----|-------|-------|-------|-------|
| Shaft                  | Bore | 12                           |      | 16    |      | 20  |    | 25  |    | 30  |    | 40    |       | 50    |       |
|                        |      | U                            | L    | U     | L    | U   | L  | U   | L  | U   | L  | U     | L     | U     | L     |
| h6                     | H6   | +50                          | 0    | +51   | -1   | +60 | -1 | +62 | -1 | +62 | -1 | +74   | -2    | +74   | -2    |
| h6                     | H7   | +58                          | 0    | +59   | -1   | +69 | -1 | +71 | -1 | +71 | -1 | +85   | -2    | +85   | -2    |
| h6                     | JS6  | +43.5                        | -6.5 | +44.5 | -7.5 | +52 | -9 | +54 | -9 | +54 | -9 | +64.5 | -11.5 | +64.5 | -11.5 |

### ④ 35 Operating clearance



00008845

$\Delta_s$  Operating clearance


#### 1.5.2.3 Adjust the preload

Preloaded bearings are set on a master shaft without clearance that is smaller than the running shaft by the preload dimension.

#### 1.5.2.4 Suspended arrangement of guide system

**!** If the guide system is suspended, a fall arrester is recommended.

36 Suspended shaft guidance system with fall arrester



00008EB4

1 Fall arrester

2 Mounting position 180°

## 2 Linear ball bearings and linear ball bearing units of the compact series

### 2.1 Product design

Linear ball bearings KH and linear ball bearing units of the compact series require a small radial installation space and are particularly cost-effective. Their low radial height automatically makes them ideal for applications where only a small radial installation space is available.

The closed design makes them suitable for use with shafts.

37 Linear ball bearings KH, KH..-PP, with and without seal (PP)



00008DE3

The bearings have an outer ring with opening that integrates a ball-cage assembly with a plastic cage. The outer ring is formed without cutting and hardened. The balls run back into the openings in the outer ring.

The bearings are available in an open design and with a lip seal on both sides (suffix PP). The seals on the front have two sealing lips: the outer lips prevent dirt from entering and the inner lips keep the lubricant in the bearing.

Linear ball bearing units in the compact series are available with an integrated bearing, as well as in a tandem version with two bearings that offers particularly load-bearing properties.

High-strength aluminum is used for the housing.

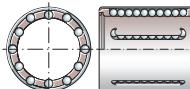
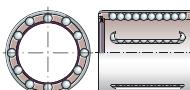
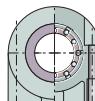
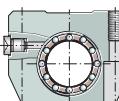
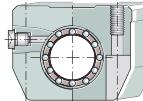
38 Closed units KGHK..-B-PP-AS



0000897C

39 Closed units KTHK..-B-PP-AS, bearings in tandem arrangement








00008986

40 Closed unit KGHA..-PP



00008E9E

## 12 Linear ball bearings and linear ball bearing units of the compact series

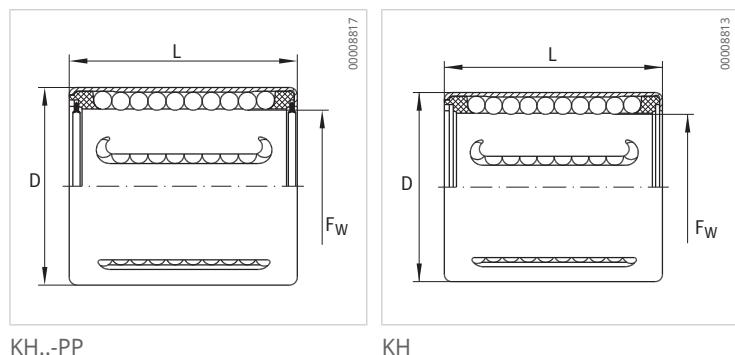
| Model series | Characteristic                                                                                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KH           | <ul style="list-style-type: none"> <li>Linear ball bearing</li> </ul>                                                              |
| KH..-PP      | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>Sealed</li> </ul>                                              |
| KGHA..-PP    | <ul style="list-style-type: none"> <li>Closed unit</li> <li>Sealed</li> </ul>                                                      |
| KGHK..-PP-AS | <ul style="list-style-type: none"> <li>Closed unit</li> <li>Sealed</li> <li>Can be relubricated</li> </ul>                         |
| KTHK..-PP-AS | <ul style="list-style-type: none"> <li>Closed unit</li> <li>Tandem design</li> <li>Sealed</li> <li>Can be relubricated</li> </ul>  |

## Further information

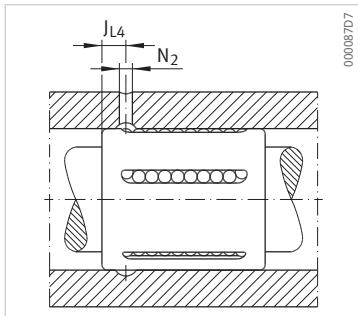
- Product tables ►31|2.2
- Shafts ►82|6.1
- Support rails ►101|7.1
- Shaft support blocks ►117|8.1

## 2.2 Product tables

### 2.2.1 Explanations


|          |    |                                   |
|----------|----|-----------------------------------|
| $A_3$    | mm | Lubrication connection distance   |
| $A_5$    | mm | Stop side distance                |
| $B$      | mm | Width of the housing              |
| $B_1$    | mm | Width of housing flange           |
| $C$      | N  | Basic dynamic load rating         |
| $C_0$    | N  | Basic static load rating          |
| $D$      | mm | Outside diameter                  |
| $F_w$    | mm | Inner envelope diameter           |
| $G_2$    | -  | Connecting thread                 |
| $H$      | mm | Height of the housing             |
| $H_2$    | mm | Center distance                   |
| $H_4$    | mm | Height of housing flange          |
| $H_5$    | mm | Height of stop edge               |
| $H_6$    | mm | Height of the mounting hole       |
| $J_B$    | mm | Mounting hole distance            |
| $J_L$    | mm | Distance between mounting holes   |
| $J_{L4}$ | mm | Lubrication hole distance         |
| $K_5$    | -  | Fixing screw                      |
| $K_8$    | -  | Lubrication connection            |
| $L$      | mm | Length of the housing             |
| $L$      | mm | Length of the linear ball bearing |
| $m$      | g  | Mass                              |
| $N_1$    | mm | Diameter of the mounting hole     |
| $N_2$    | mm | Connection dimension              |
| $N_3$    | mm | Diameter of the counterbore       |
| $T_5$    | mm | Thread depth                      |

## 2.2.2 Linear ball bearing KH


Sealed (optional)

Can be relubricated

2

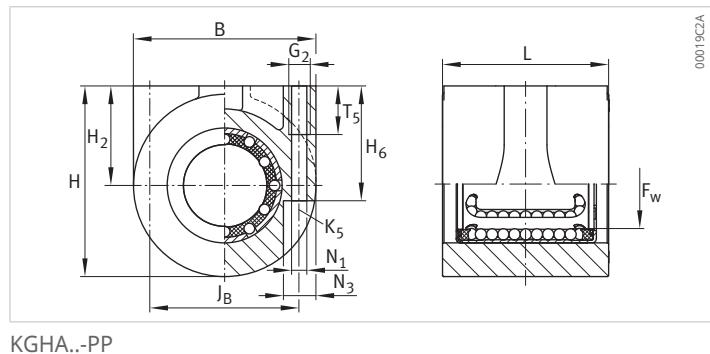


| Designation | m    | Fw | D  | L  | JL4 | N2  |
|-------------|------|----|----|----|-----|-----|
| -           | g    | mm | mm | mm | mm  | mm  |
| KH06        | 7    | 6  | 12 | 22 | 4   | 2   |
| KH06-PP     | 7    | 6  | 12 | 22 | 4   | 2   |
| KH08        | 12   | 8  | 15 | 24 | 6   | 2   |
| KH08-PP     | 12   | 8  | 15 | 24 | 6   | 2   |
| KH10        | 14.5 | 10 | 17 | 26 | 6   | 2.5 |
| KH10-PP     | 14.5 | 10 | 17 | 26 | 6   | 2.5 |
| KH12        | 18.5 | 12 | 19 | 28 | 6   | 2.5 |
| KH12-PP     | 18.5 | 12 | 19 | 28 | 6   | 2.5 |
| KH14        | 20.5 | 14 | 21 | 28 | 6   | 2.5 |
| KH14-PP     | 20.5 | 14 | 21 | 28 | 6   | 2.5 |
| KH16        | 27.5 | 16 | 24 | 30 | 7   | 2.5 |
| KH16-PP     | 27.5 | 16 | 24 | 30 | 7   | 2.5 |
| KH20        | 32.5 | 20 | 28 | 30 | 7   | 2.5 |
| KH20-PP     | 32.5 | 20 | 28 | 30 | 7   | 2.5 |
| KH25        | 66   | 25 | 35 | 40 | 8   | 2.5 |
| KH25-PP     | 66   | 25 | 35 | 40 | 8   | 2.5 |
| KH30        | 95   | 30 | 40 | 50 | 8   | 2.5 |
| KH30-PP     | 95   | 30 | 40 | 50 | 8   | 2.5 |
| KH40        | 182  | 40 | 52 | 60 | 9   | 2.5 |
| KH40-PP     | 182  | 40 | 52 | 60 | 9   | 2.5 |
| KH50        | 252  | 50 | 62 | 70 | 9   | 2.5 |
| KH50-PP     | 252  | 50 | 62 | 70 | 9   | 2.5 |



Connection dimensions

| C    | C <sub>0</sub> | C    | C <sub>0</sub> |
|------|----------------|------|----------------|
| min  | min            | Max. | Max.           |
| N    | N              | N    | N              |
| 340  | 240            | 390  | 340            |
| 340  | 240            | 390  | 340            |
| 410  | 280            | 475  | 400            |
| 410  | 280            | 475  | 400            |
| 510  | 370            | 590  | 520            |
| 510  | 370            | 590  | 520            |
| 670  | 510            | 800  | 740            |
| 670  | 510            | 800  | 740            |
| 690  | 520            | 830  | 760            |
| 690  | 520            | 830  | 760            |
| 890  | 620            | 1060 | 910            |
| 890  | 620            | 1060 | 910            |
| 1110 | 790            | 1170 | 1010           |
| 1110 | 790            | 1170 | 1010           |
| 2280 | 1670           | 2420 | 2130           |
| 2280 | 1670           | 2420 | 2130           |
| 3300 | 2700           | 3300 | 3100           |
| 3300 | 2700           | 3300 | 3100           |
| 5300 | 4450           | 5300 | 4950           |
| 5300 | 4450           | 5300 | 4950           |
| 6800 | 6300           | 6800 | 7000           |
| 6800 | 6300           | 6800 | 7000           |


## 2.2.3 Linear ball bearing units

KGHA

Sealed

Greased

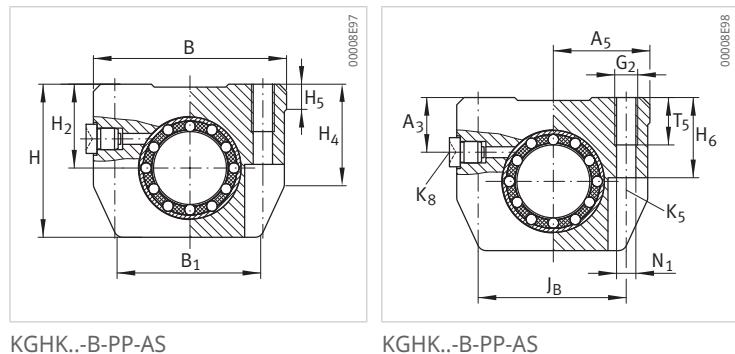
2



| Designation | m<br>- | F <sub>w</sub> | H <sub>2</sub> | H    | B  | L  |
|-------------|--------|----------------|----------------|------|----|----|
|             |        |                | ±0.015         |      |    |    |
| -           | g      | mm             | mm             | mm   | mm | mm |
| KGHA16-PP   | 228    | 16             | 20             | 41   | 42 | 37 |
| KGHA20-PP   | 303    | 20             | 25             | 48.5 | 47 | 39 |
| KGHA25-PP   | 496    | 25             | 30             | 57.5 | 55 | 49 |
| KGHA30-PP   | 860    | 30             | 35             | 67.5 | 65 | 59 |
| KGHA40-PP   | 1434   | 40             | 45             | 84   | 78 | 71 |

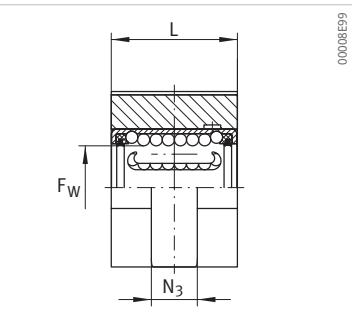
<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

| H <sub>6</sub> | T <sub>5</sub> | J <sub>B</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | C    | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|------|----------------|
|                |                | ±0.1           |                |                |                |                              |      |                |
| mm             | mm             | mm             | -              | mm             | mm             | -                            | N    | N              |
| 27             | 15             | 32             | M6             | 5.1            | 8.1            | M4                           | 890  | 620            |
| 29             | 15             | 38             | M6             | 5.1            | 8.1            | M4                           | 1110 | 790            |
| 35             | 15             | 46             | M6             | 5.1            | 8.1            | M4                           | 2280 | 1670           |
| 39             | 20             | 54             | M8             | 6.7            | 11.1           | M6                           | 3300 | 2700           |
| 49             | 20             | 66             | M8             | 6.7            | 11.1           | M6                           | 5300 | 4450           |


## 2.2.4 Linear ball bearing units

KGHK

Sealed


Greased, can be relubricated

2



| Designation    | m    | F <sub>w</sub> | B   | L    | H    | J <sub>B</sub><br>±0.15 | B <sub>1</sub> | A <sub>5</sub> | H <sub>2</sub> |        |
|----------------|------|----------------|-----|------|------|-------------------------|----------------|----------------|----------------|--------|
|                |      |                |     |      |      |                         |                |                | +0.010         | -0.014 |
| -              | g    | mm             | mm  | mm   | mm   | mm                      | mm             | mm             | mm             | mm     |
| KGHK06-B-PP-AS | 40   | 6              | 32  | 22.2 | 27   | 23                      | 25             | 16             | 13             |        |
| KGHK08-B-PP-AS | 50   | 8              | 32  | 24.2 | 27   | 23                      | 25             | 16             | 14             |        |
| KGHK12-B-PP-AS | 80   | 12             | 40  | 28.2 | 33   | 29                      | 32             | 20             | 17             |        |
| KGHK10-B-PP-AS | 70   | 10             | 40  | 26.2 | 33   | 29                      | 32             | 20             | 16             |        |
| KGHK16-B-PP-AS | 110  | 16             | 43  | 30.2 | 36.5 | 34                      | 34             | 21.5           | 19             |        |
| KGHK14-B-PP-AS | 100  | 14             | 43  | 28.2 | 36.5 | 34                      | 34             | 21.5           | 18             |        |
| KGHK20-B-PP-AS | 150  | 20             | 53  | 30.2 | 42.5 | 40                      | 40             | 26.5           | 23             |        |
| KGHK25-B-PP-AS | 270  | 25             | 60  | 40.2 | 52.5 | 48                      | 44             | 30             | 27             |        |
| KGHK30-B-PP-AS | 400  | 30             | 67  | 50.2 | 60   | 53                      | 49.6           | 33.5           | 30             |        |
| KGHK40-B-PP-AS | 750  | 40             | 87  | 60.2 | 73.5 | 69                      | 63             | 43.5           | 39             |        |
| KGHK50-B-PP-AS | 1250 | 50             | 103 | 70.2 | 92   | 82                      | 74             | 51.5           | 47             |        |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



KGHK..-B-PP-AS

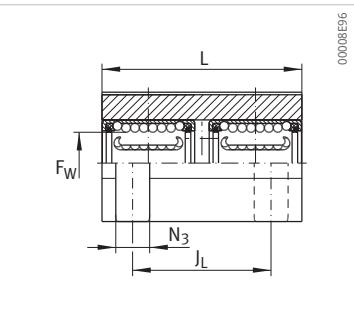
| H <sub>4</sub> | H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | A <sub>3</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | K <sub>8</sub> | C    | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|----------------|------|----------------|
| mm             | mm             | mm             | mm             | mm             | -              | mm             | mm             | -                            | -              | N    | N              |
| 20.6           | 5              | 9              | 13             | 9              | M4             | 3.4            | 7              | M3                           | NIPA1          | 340  | 240            |
| 20.6           | 5              | 9              | 13             | 9              | M4             | 3.4            | 7              | M3                           | NIPA1          | 410  | 280            |
| 25.1           | 5              | 11             | 16             | 11             | M5             | 4.3            | 10             | M4                           | NIPA1          | 670  | 510            |
| 25.1           | 5              | 11             | 16             | 11             | M5             | 4.3            | 10             | M4                           | NIPA1          | 510  | 370            |
| 28.1           | 6.9            | 11             | 18             | 13             | M5             | 4.3            | 10             | M4                           | NIPA1          | 890  | 620            |
| 28.1           | 6.9            | 11             | 18             | 13             | M5             | 4.3            | 10             | M4                           | NIPA1          | 690  | 520            |
| 29.8           | 7.4            | 13             | 22             | 15             | M6             | 5.3            | 11             | M5                           | NIPA2          | 1110 | 790            |
| 36.6           | 9.9            | 18             | 26             | 17.5           | M8             | 6.6            | 15             | M6                           | NIPA2          | 2280 | 1670           |
| 42.7           | 8              | 18             | 29             | 18             | M8             | 6.6            | 15             | M6                           | NIPA2          | 3300 | 2700           |
| 49.7           | 12.8           | 22             | 38             | 23             | M10            | 8.4            | 18             | M8                           | NIPA2          | 5300 | 4450           |
| 62.3           | 10.9           | 26             | 46             | 28             | M12            | 10.5           | 20             | M10                          | NIPA2          | 6800 | 6300           |

## 2.2.5 Linear ball bearing units

KTHK

Tandem arrangement

Sealed


Greased, can be relubricated

2



| Designation    | m    | F <sub>w</sub> | B   | L   | H    | J <sub>B</sub> | B <sub>1</sub> | A <sub>5</sub> | J <sub>L</sub> <sup>1)</sup> | H <sub>2</sub> |
|----------------|------|----------------|-----|-----|------|----------------|----------------|----------------|------------------------------|----------------|
|                |      |                |     |     |      |                |                |                |                              |                |
| -              | g    | mm             | mm  | mm  | mm   | mm             | mm             | mm             | mm                           | mm             |
| KTHK12-B-PP-AS | 170  | 12             | 40  | 60  | 33   | 29             | 32             | 20             | 35                           | 17             |
| KTHK16-B-PP-AS | 230  | 16             | 43  | 65  | 36.5 | 34             | 34             | 21.5           | 40                           | 19             |
| KTHK20-B-PP-AS | 320  | 20             | 53  | 65  | 42.5 | 40             | 40             | 26.5           | 45                           | 23             |
| KTHK25-B-PP-AS | 580  | 25             | 60  | 85  | 52.5 | 48             | 44             | 30             | 55                           | 27             |
| KTHK30-B-PP-AS | 850  | 30             | 67  | 105 | 60   | 53             | 49.6           | 33.5           | 70                           | 30             |
| KTHK40-B-PP-AS | 1600 | 40             | 87  | 125 | 73.5 | 69             | 63             | 43.5           | 85                           | 39             |
| KTHK50-B-PP-AS | 2700 | 50             | 103 | 145 | 92   | 82             | 74             | 51.5           | 100                          | 47             |

<sup>1)</sup> Hole position symmetrical to bearing length L.<sup>2)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.<sup>3)</sup> The load ratings apply only to hardened (670 HV + 165 HV) and ground shaft raceways and to an even load on the two linear ball bearings.

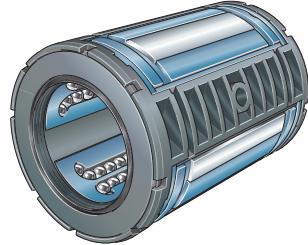


KTHK..-B-PP-AS

| H <sub>4</sub> | H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | A <sub>3</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>2)</sup> | K <sub>8</sub> | C <sup>3)</sup> | C <sub>0</sub> <sup>3)</sup> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|----------------|-----------------|------------------------------|
| mm             | mm             | mm             | mm             | mm             | -              | mm             | mm             | -                            | -              | N               | N                            |
| 25.1           | 5              | 11             | 16             | 11             | M5             | 4.3            | 10             | M4                           | NIPA1          | 1090            | 1020                         |
| 28.1           | 6.9            | 11             | 18             | 13             | M5             | 4.3            | 10             | M4                           | NIPA1          | 1440            | 1240                         |
| 29.8           | 7.4            | 13             | 22             | 15             | M6             | 5.3            | 11             | M5                           | NIPA2          | 1800            | 1580                         |
| 36.6           | 9.9            | 18             | 26             | 17.5           | M8             | 6.6            | 11             | M6                           | NIPA2          | 3700            | 3350                         |
| 42.7           | 8              | 18             | 29             | 18             | M8             | 6.6            | 15             | M6                           | NIPA2          | 5400            | 5400                         |
| 49.7           | 12.8           | 22             | 38             | 23             | M10            | 8.4            | 18             | M8                           | NIPA2          | 8600            | 6900                         |
| 62.3           | 10.9           | 26             | 46             | 28             | M12            | 10.5           | 20             | M10                          | NIPA2          | 11000           | 12600                        |

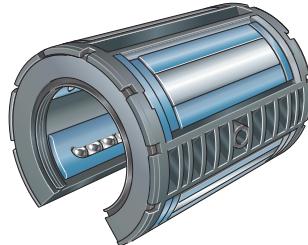
## 3 Linear ball bearings and linear ball bearing units of the heavy-duty series

### 3.1 Product design


Linear ball bearings of the heavy-duty series KS and KSO and the associated ball bearing units have a particularly high load-bearing capacity and are self-aligning to compensate for misalignment. They have very good running behavior.

The bearings are available with contact seals or with gap seals. The contact seals on the front have two sealing lips: the outer lips prevent dirt from entering and the inner lips keep the lubricant in the bearing.

Linear ball bearings KS and KSO consist of a plastic cage with loosely held segments. The double-row segments with convex raceway plates can adjust in all directions and thus compensate for alignment errors. Since the entire segment adjusts, this prevents disruptions in the ball circulation, which results in even and low displacement resistance.


The series KS is closed and designed for use with shafts. KSO has a segment cut-out and is used in conjunction with support rails.

41 Linear ball bearings KS, KS..-PP, closed, with and without seal (PP)



00008C2B

42 Linear ball bearings KSO, KSO..-PP, with segment cut-out, with and without seal (PP)



00008C36

Linear ball bearing units in the heavy-duty series are available with an integrated bearing, as well as in a tandem version with two bearings that offers particularly load-bearing properties.

High-strength aluminum is used for the housing.

Housings are available in a closed design, with segment cut-out for supported shafts, and with or without a slot. The slotted versions enable the radial clearance to be adjusted using an adjusting screw.

All series have a stop edge and centering holes for pin holes.

The assembled bearings are sealed on both sides, feature initial greasing and can be relubricated through lubricating nipples in the housing.

④43 Closed units KGSNG..-PP-AS, KGSNS..PP-AS, housing slotted (KGSNS) or not slotted (KGSNG)



00008CED

④44 Closed units KTSG..-PP-AS, bearings in tandem arrangement



001CD0AF

④45 Units with segment cut-out KGSNO..-PP-AS, KGSNOS..PP-AS, housing slotted (KGSNOS) or not slotted (KGSNO)



00008CF7

④46 Units with segment cut-out KTSO..-PP-AS, bearing in tandem arrangement



001CD0B2

47 Units with segment cutout KGSC..-PP-AS, KGSCS..-PP-AS, housing slotted (KGSCS) or not slotted (KGSC)



00008D04

13 Linear ball bearings and linear ball bearing units of the heavy-duty series

| Model series   |  | Characteristic                                                                                                                                               |
|----------------|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KS             |  |                                                                                                                                                              |
| KS..-PP        |  | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>Self-aligning</li> <li>With or without lip seal</li> </ul>                               |
| KSO            |  |                                                                                                                                                              |
| KSO..-PP       |  | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>With segment cut-out</li> <li>Self-aligning</li> <li>With or without lip seal</li> </ul> |
| KGSNG..-PP-AS  |  | <ul style="list-style-type: none"> <li>Closed</li> <li>Can be relubricated</li> </ul>                                                                        |
| KGSNS..-PP-AS  |  | <ul style="list-style-type: none"> <li>Closed</li> <li>Housing slotted</li> <li>Can be relubricated</li> </ul>                                               |
| KTSG..-PP-AS   |  | <ul style="list-style-type: none"> <li>Closed</li> <li>Tandem arrangement</li> <li>Can be relubricated</li> </ul>                                            |
| KGSNO..-PP-AS  |  | <ul style="list-style-type: none"> <li>With segment cut-out</li> <li>Can be relubricated</li> </ul>                                                          |
| KGSNOS..-PP-AS |  | <ul style="list-style-type: none"> <li>With segment cut-out</li> <li>Housing slotted</li> <li>Can be relubricated</li> </ul>                                 |
| KTSO..-PP-AS   |  | <ul style="list-style-type: none"> <li>With segment cut-out</li> <li>Tandem arrangement</li> <li>Can be relubricated</li> </ul>                              |
| KGSC..-PP-AS   |  | <ul style="list-style-type: none"> <li>Open on the side</li> <li>Can be relubricated</li> </ul>                                                              |
| KGSCS..-PP-AS  |  | <ul style="list-style-type: none"> <li>Open on the side</li> <li>Housing slotted</li> <li>Can be relubricated</li> </ul>                                     |

## Further information

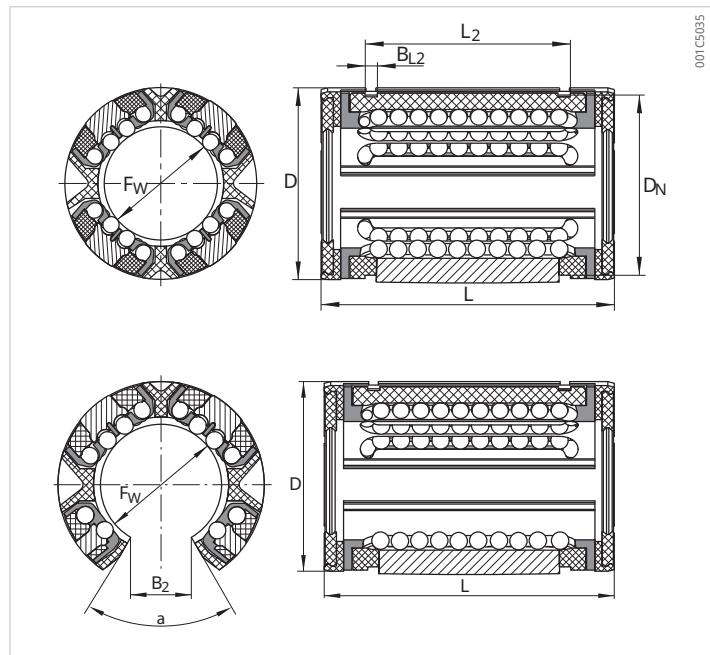
- Product tables ►43 | 3.2
- Shafts ►82 | 6.1
- Support rails ►101 | 7.1
- Shaft support blocks ►117 | 8.1

## 3.2 Product tables

### 3.2.1 Explanations

|                 |    |                                 |
|-----------------|----|---------------------------------|
| (1)             | -  | Main load direction             |
| A <sub>10</sub> | mm | Offset of relubrication opening |
| A <sub>2</sub>  | mm | Mounting hole distance          |
| A <sub>4</sub>  | mm | Pin hole distance               |
| A <sub>5</sub>  | mm | Stop side distance              |
| B               | mm | Width of the housing            |
| B <sub>1</sub>  | mm | Width of housing flange         |
| B <sub>2</sub>  | mm | Segment opening                 |
| B <sub>L2</sub> | mm | Width of mounting groove        |
| C               | N  | Basic dynamic load rating       |
| C <sub>0</sub>  | N  | Basic static load rating        |
| D               | mm | Outside diameter                |
| D <sub>N</sub>  | mm | Diameter of mounting groove     |
| F <sub>w</sub>  | mm | Inner envelope diameter         |
| G <sub>2</sub>  | -  | Connecting thread               |
| H               | mm | Height of the housing           |
| H <sub>2</sub>  | mm | Center distance                 |
| H <sub>4</sub>  | mm | Height of housing flange        |
| H <sub>5</sub>  | mm | Height of stop edge             |
| H <sub>6</sub>  | mm | Height of the mounting hole     |
| H <sub>6</sub>  | mm | Depth of mounting hole          |
| J <sub>B</sub>  | mm | Mounting hole distance          |
| J <sub>L</sub>  | mm | Pin hole distance               |
| J <sub>L</sub>  | mm | Distance between mounting holes |
| K <sub>5</sub>  | -  | Fixing screw                    |
| K <sub>8</sub>  | -  | Lubrication connection          |
| L               | mm | Length of the housing           |
| L               | mm | Lower limit deviation           |
| L <sub>2</sub>  | mm | Connection dimension            |
| L <sub>6</sub>  | mm | Pin hole distance               |
| m               | g  | Mass                            |
| n               | -  | Number of ball rows             |
| N <sub>1</sub>  | mm | Diameter of the through bore    |
| N <sub>3</sub>  | mm | Diameter of the counterbore     |
| N <sub>4</sub>  | mm | Diameter of the pin bore        |
| T <sub>5</sub>  | mm | Thread depth                    |
| U               | mm | Upper limit deviation           |
| a               | °  | Segment cut-out angle           |

### 3.2.2 Linear ball bearings KS, KSO

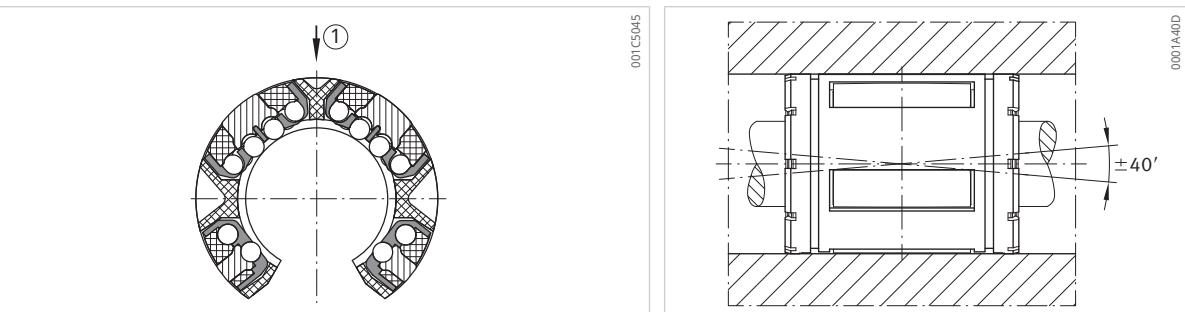

self-aligning

closed

With segment cut-out

Sealed (optional)

Can be relubricated




KS..-PP, KS, KSO..-PP, KSO

| Designation | m   | $F_w$ | D  | L   | B <sub>2</sub> | L <sub>2</sub><br>H13 | B <sub>L2</sub> | D <sub>N</sub> |
|-------------|-----|-------|----|-----|----------------|-----------------------|-----------------|----------------|
| -           | g   | mm    | mm | mm  | mm             | mm                    | mm              | mm             |
| KS12        | 18  | 12    | 22 | 32  | -              | 22.6                  | 1.3             | 21             |
| KS12-PP     | 18  | 12    | 22 | 32  | -              | 22.6                  | 1.3             | 21             |
| KSO12       | 13  | 12    | 22 | 32  | 7.6            | -                     | -               | -              |
| KSO12-PP    | 13  | 12    | 22 | 32  | 7.6            | -                     | -               | -              |
| KS16        | 28  | 16    | 26 | 36  | -              | 24.6                  | 1.3             | 25             |
| KS16-PP     | 28  | 16    | 26 | 36  | -              | 24.6                  | 1.3             | 25             |
| KSO16       | 19  | 16    | 26 | 36  | 10.1           | -                     | -               | -              |
| KSO16-PP    | 19  | 16    | 26 | 36  | 10.1           | -                     | -               | -              |
| KS20        | 51  | 20    | 32 | 45  | -              | 31.2                  | 1.6             | 30.7           |
| KS20-PP     | 51  | 20    | 32 | 45  | -              | 31.2                  | 1.6             | 30.7           |
| KSO20       | 38  | 20    | 32 | 45  | 10             | -                     | -               | -              |
| KSO20-PP    | 38  | 20    | 32 | 45  | 10             | -                     | -               | -              |
| KS25        | 102 | 25    | 40 | 58  | -              | 43.7                  | 1.85            | 38             |
| KS25-PP     | 102 | 25    | 40 | 58  | -              | 43.7                  | 1.85            | 38             |
| KSO25       | 75  | 25    | 40 | 58  | 12.5           | -                     | -               | -              |
| KSO25-PP    | 75  | 25    | 40 | 58  | 12.5           | -                     | -               | -              |
| KS30        | 172 | 30    | 47 | 68  | -              | 51.7                  | 1.85            | 44.7           |
| KS30-PP     | 172 | 30    | 47 | 68  | -              | 51.7                  | 1.85            | 44.7           |
| KSO30       | 135 | 30    | 47 | 68  | 14.3           | -                     | -               | -              |
| KSO30-PP    | 135 | 30    | 47 | 68  | 14.3           | -                     | -               | -              |
| KS40        | 335 | 40    | 62 | 80  | -              | 60.3                  | 2.15            | 59.4           |
| KS40-PP     | 335 | 40    | 62 | 80  | -              | 60.3                  | 2.15            | 59.4           |
| KSO40       | 259 | 40    | 62 | 80  | 18.2           | -                     | -               | -              |
| KSO40-PP    | 259 | 40    | 62 | 80  | 18.2           | -                     | -               | -              |
| KS50        | 589 | 50    | 75 | 100 | -              | 77.3                  | 2.65            | 71.4           |
| KS50-PP     | 589 | 50    | 75 | 100 | -              | 77.3                  | 2.65            | 71.4           |
| KSO50       | 454 | 50    | 75 | 100 | 22.7           | -                     | -               | -              |
| KSO50-PP    | 454 | 50    | 75 | 100 | 22.7           | -                     | -               | -              |

<sup>1)</sup> Hole position symmetrical to bearing length L.

<sup>2)</sup> Only one lubrication hole and one fixing hole each for sizes 16 and 20.

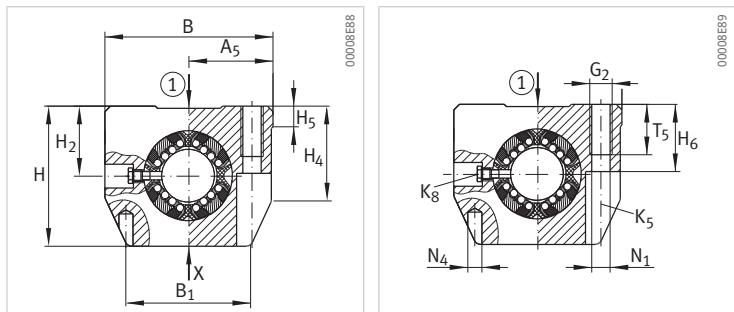


KSO..-PP, KSO

Self-aligning up to  $\pm 40^\circ$ 

| A <sub>10</sub><br>mm | N <sub>1</sub> <sup>1) 2)</sup><br>mm | N <sub>4</sub> <sup>1) 2)</sup><br>mm | α<br>° | n | C<br>min | C <sub>0</sub><br>min | C<br>Max. | C <sub>0</sub><br>Max. |
|-----------------------|---------------------------------------|---------------------------------------|--------|---|----------|-----------------------|-----------|------------------------|
|                       |                                       |                                       |        |   | N        | N                     | N         | N                      |
| -                     | -                                     | 3                                     | -      | 8 | 630      | 600                   | 900       | 1100                   |
| -                     | -                                     | 3                                     | -      | 8 | 630      | 600                   | 900       | 1100                   |
| -                     | 3                                     | 3                                     | 78     | 6 | -        | -                     | 900       | 1100                   |
| -                     | 3                                     | 3                                     | 78     | 6 | -        | -                     | 900       | 1100                   |
| -                     | 3                                     | 3                                     | -      | 8 | 1060     | 950                   | 1430      | 1550                   |
| -                     | 3                                     | 3                                     | -      | 8 | 1060     | 950                   | 1430      | 1550                   |
| -                     | 3                                     | 3                                     | 78     | 6 | -        | -                     | 1430      | 1550                   |
| -                     | 3                                     | 3                                     | 78     | 6 | -        | -                     | 1430      | 1550                   |
| -                     | 3                                     | 3                                     | -      | 8 | 1780     | 1600                  | 2200      | 2310                   |
| -                     | 3                                     | 3                                     | -      | 8 | 1780     | 1600                  | 2200      | 2310                   |
| -                     | 3                                     | 3                                     | 60     | 6 | -        | -                     | 2200      | 2310                   |
| -                     | 3                                     | 3                                     | 60     | 6 | -        | -                     | 2200      | 2310                   |
| 1.5                   | 3.5                                   | 3                                     | -      | 8 | 2700     | 2430                  | 3950      | 4300                   |
| 1.5                   | 3.5                                   | 3                                     | -      | 8 | 2700     | 2430                  | 3950      | 4300                   |
| 1.5                   | 3.5                                   | 3                                     | 60     | 6 | -        | -                     | 3950      | 4300                   |
| 1.5                   | 3.5                                   | 3                                     | 60     | 6 | -        | -                     | 3950      | 4300                   |
| 2                     | 3.5                                   | 3                                     | -      | 8 | 4650     | 3970                  | 5900      | 6000                   |
| 2                     | 3.5                                   | 3                                     | -      | 8 | 4650     | 3970                  | 5900      | 6000                   |
| 2                     | 3.5                                   | 3                                     | 57     | 6 | -        | -                     | 5900      | 6000                   |
| 2                     | 3.5                                   | 3                                     | 57     | 6 | -        | -                     | 5900      | 6000                   |
| 1.5                   | 3.5                                   | 3                                     | -      | 8 | 8800     | 7200                  | 10200     | 9600                   |
| 1.5                   | 3.5                                   | 3                                     | -      | 8 | 8800     | 7200                  | 10200     | 9600                   |
| 1.5                   | 3.5                                   | 3                                     | 54     | 6 | -        | -                     | 10200     | 9600                   |
| 1.5                   | 3.5                                   | 3                                     | 54     | 6 | -        | -                     | 10200     | 9600                   |
| 2.5                   | 4.5                                   | 5                                     | -      | 8 | 12300    | 9700                  | 15100     | 13900                  |
| 2.5                   | 4.5                                   | 5                                     | -      | 8 | 12300    | 9700                  | 15100     | 13900                  |
| 2.5                   | 4.5                                   | 5                                     | 54     | 6 | -        | -                     | 15100     | 13900                  |
| 2.5                   | 4.5                                   | 5                                     | 54     | 6 | -        | -                     | 15100     | 13900                  |

## 3.2.3 Linear ball bearing units


KGSNG, KGSNS

closed

With slot (optional)

Sealed

Greased, can be relubricated



KGSNG..-PP-AS, KGSNS..-PP-AS

KGSNG..-PP-AS, KGSNS..-PP-AS

| Designation   | m    | F <sub>w</sub> | B   | L   | H   | J <sub>B</sub> | B <sub>1</sub> | A <sub>5</sub> | J <sub>L</sub> | H <sub>2</sub> |
|---------------|------|----------------|-----|-----|-----|----------------|----------------|----------------|----------------|----------------|
|               |      |                |     |     |     |                |                |                |                |                |
| -             | g    | mm             | mm  | mm  | mm  | mm             | mm             | mm             | mm             | mm             |
| KGSNG12-PP-AS | 110  | 12             | 43  | 32  | 35  | 32             | 34             | 21.5           | 23             | 18             |
| KGSNS12-PP-AS | 100  | 12             | 43  | 32  | 35  | 32             | 34             | 21.5           | 23             | 18             |
| KGSNG16-PP-AS | 220  | 16             | 53  | 37  | 42  | 40             | 40             | 26.5           | 26             | 22             |
| KGSNS16-PP-AS | 200  | 16             | 53  | 37  | 42  | 40             | 40             | 26.5           | 26             | 22             |
| KGSNG20-PP-AS | 370  | 20             | 60  | 45  | 50  | 45             | 44             | 30             | 32             | 25             |
| KGSNS20-PP-AS | 360  | 20             | 60  | 45  | 50  | 45             | 44             | 30             | 32             | 25             |
| KGSNG25-PP-AS | 630  | 25             | 78  | 58  | 60  | 60             | 59.4           | 39             | 40             | 30             |
| KGSNS25-PP-AS | 550  | 25             | 78  | 58  | 60  | 60             | 59.4           | 39             | 40             | 30             |
| KGSNG30-PP-AS | 890  | 30             | 87  | 68  | 70  | 68             | 63             | 43.5           | 45             | 35             |
| KGSNS30-PP-AS | 730  | 30             | 87  | 68  | 70  | 68             | 63             | 43.5           | 45             | 35             |
| KGSNG40-PP-AS | 1300 | 40             | 108 | 80  | 90  | 86             | 76             | 54             | 58             | 45             |
| KGSNS40-PP-AS | 1350 | 40             | 108 | 80  | 90  | 86             | 76             | 54             | 58             | 45             |
| KGSNG50-PP-AS | 2200 | 50             | 132 | 100 | 105 | 108            | 90             | 66             | 50             | 50             |
| KGSNS50-PP-AS | 2250 | 50             | 132 | 100 | 105 | 108            | 90             | 66             | 50             | 50             |

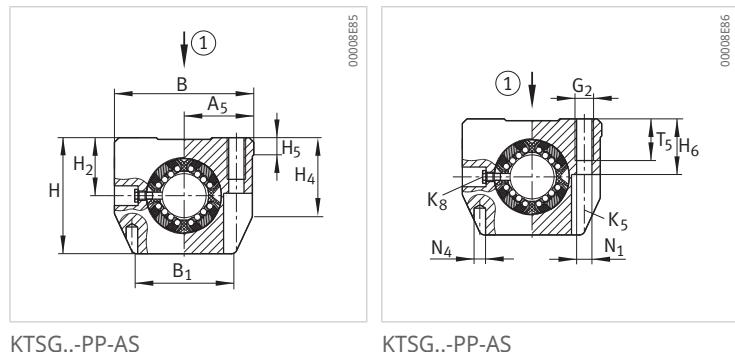
1) Centering for pin hole.

2) Hole position symmetrical to bearing length L.



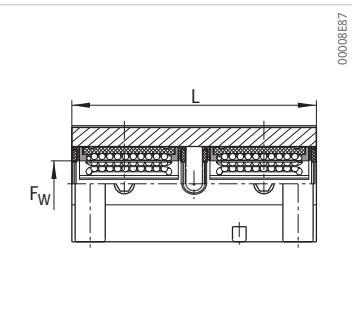
| H <sub>5</sub> | H <sub>4</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>4</sub> <sup>1)</sup> | N <sub>3</sub> | K <sub>5</sub> <sup>2)</sup> | K <sub>8</sub> <sup>2)</sup> | SW  | n | C     | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|----------------|------------------------------|------------------------------|-----|---|-------|----------------|
| mm             | mm             | mm             | mm             | -              | mm             | mm                           | mm             | -                            | -                            | -   | - | N     | N              |
| 5.4            | 26.6           | 11             | 16.5           | M5             | 4.3            | 4                            | 8              | M4                           | NIP4MZ                       | -   | 8 | 900   | 1100           |
| 5.4            | 26.6           | 11             | 16.5           | M5             | 4.3            | 4                            | 8              | M4                           | NIP4MZ                       | 2.5 | 8 | 900   | 1100           |
| 6.9            | 29.3           | 13             | 21             | M6             | 5.3            | 4                            | 10             | M5                           | NIP4MZ                       | -   | 8 | 1430  | 1550           |
| 6.9            | 29.3           | 13             | 21             | M6             | 5.3            | 4                            | 10             | M5                           | NIP4MZ                       | 3   | 8 | 1430  | 1550           |
| 7.4            | 34.1           | 18             | 24             | M8             | 6.6            | 5                            | 11             | M6                           | NIP4MZ                       | -   | 8 | 2200  | 2310           |
| 7.4            | 34.1           | 18             | 24             | M8             | 6.6            | 5                            | 11             | M6                           | NIP4MZ                       | 4   | 8 | 2200  | 2310           |
| 8.3            | 41.5           | 22             | 29             | M10            | 8.4            | 6                            | 15             | M8                           | NIP5MZ                       | -   | 8 | 3950  | 4300           |
| 8.3            | 41.5           | 22             | 29             | M10            | 8.4            | 6                            | 15             | M8                           | NIP5MZ                       | 5   | 8 | 3950  | 4300           |
| 9.3            | 46.2           | 22             | 34             | M10            | 8.4            | 6                            | 15             | M8                           | NIP5MZ                       | -   | 8 | 5900  | 6000           |
| 9.3            | 46.2           | 22             | 34             | M10            | 8.4            | 6                            | 15             | M8                           | NIP5MZ                       | 5   | 8 | 5900  | 6000           |
| 11.7           | 57.6           | 26             | 44             | M12            | 10.5           | 8                            | 18             | M10                          | NIP5MZ                       | -   | 8 | 10200 | 9600           |
| 11.7           | 57.6           | 26             | 44             | M12            | 10.5           | 8                            | 18             | M10                          | NIP5MZ                       | 6   | 8 | 10200 | 9600           |
| 10.6           | 62             | 35             | 49             | M16            | 13.5           | 10                           | 20             | M12                          | NIP6MZ                       | -   | 8 | 15100 | 13900          |
| 10.6           | 62             | 35             | 49             | M16            | 13.5           | 10                           | 20             | M12                          | NIP6MZ                       | 8   | 8 | 15100 | 13900          |

## 3.2.4 Linear ball bearing units


KTSG

Tandem arrangement

closed


Sealed

Greased, can be relubricated



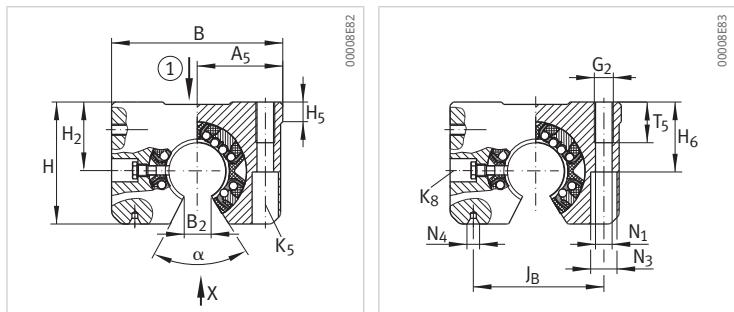
| Designation  | m<br>g | F <sub>w</sub> | B<br>mm | L<br>mm | H<br>mm | J <sub>B</sub><br>±0.15 | B <sub>1</sub><br>mm | A <sub>5</sub><br>mm | J <sub>L</sub> <sup>1)</sup><br>±0.15 | L <sub>6</sub> <sup>1)</sup><br>mm |
|--------------|--------|----------------|---------|---------|---------|-------------------------|----------------------|----------------------|---------------------------------------|------------------------------------|
|              |        |                |         |         |         |                         |                      |                      | ±0.01                                 |                                    |
| -            |        |                |         |         |         |                         |                      |                      |                                       |                                    |
| KTSG12-PP-AS | 210    | 12             | 43      | 70      | 35      | 32                      | 34                   | 21.5                 | 56                                    | 24                                 |
| KTSG16-PP-AS | 380    | 16             | 53      | 78      | 42      | 40                      | 40                   | 26.5                 | 64                                    | 26                                 |
| KTSG20-PP-AS | 550    | 20             | 60      | 96      | 50      | 45                      | 44                   | 30                   | 76                                    | 33                                 |
| KTSG25-PP-AS | 1130   | 25             | 78      | 122     | 60      | 60                      | 59.4                 | 39                   | 94                                    | 44                                 |
| KTSG30-PP-AS | 1780   | 30             | 87      | 142     | 70      | 68                      | 63                   | 43.5                 | 106                                   | 54                                 |

<sup>1)</sup> Hole position symmetrical to bearing length L.<sup>2)</sup> Centering for pin hole.



KTSG..-PP-AS

| $H_2$<br>+0.008<br>-0.016 | $H_5$ | $H_4$ | $T_5$ | $H_6$ | $G_2$ | $N_1$ | $N_4$ <sup>2)</sup> | $N_3$ | $K_5$ <sup>1)</sup> | $K_8$ <sup>1)</sup> | $n$ | $C$  | $C_0$ |
|---------------------------|-------|-------|-------|-------|-------|-------|---------------------|-------|---------------------|---------------------|-----|------|-------|
| mm                        | mm    | mm    | mm    | mm    | -     | mm    | mm                  | mm    | -                   | -                   | -   | N    | N     |
| 18                        | 5.4   | 26.6  | 11    | 16.5  | M5    | 4.3   | 4                   | 8     | M4                  | NIP4MZ              | 8   | 1460 | 2100  |
| 22                        | 6.9   | 29.3  | 13    | 21    | M6    | 5.3   | 4                   | 10    | M5                  | NIP4MZ              | 8   | 2330 | 3100  |
| 25                        | 7.4   | 34.1  | 18    | 24    | M8    | 6.6   | 5                   | 11    | M6                  | NIP4MZ              | 8   | 3500 | 4600  |
| 30                        | 8.3   | 41.5  | 22    | 29    | M10   | 8.4   | 6                   | 15    | M8                  | NIP5MZ              | 8   | 6400 | 8600  |
| 35                        | 9.3   | 46.2  | 22    | 34    | M10   | 8.4   | 6                   | 15    | M8                  | NIP5MZ              | 8   | 9600 | 12000 |


### 3.2.5 Linear ball bearing units KGSNO, KGSNOS

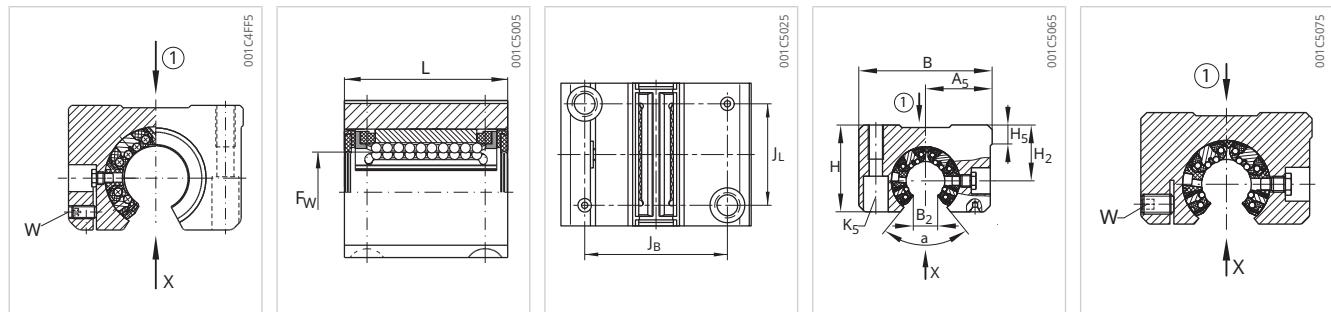
With segment cut-out

With slot (optional)

Sealed

Greased, can be relubricated




From KGSNO16-PP-AS,  
KGSNOS16-PP-AS

From KGSNO16-PP-AS,  
KGSNOS16-PP-AS

| Designation    | m    | F <sub>w</sub> | B   | L   | H  | J <sub>B</sub> | A <sub>5</sub> | B <sub>2</sub> | J <sub>L</sub> | H <sub>2</sub> |
|----------------|------|----------------|-----|-----|----|----------------|----------------|----------------|----------------|----------------|
|                |      |                |     |     |    |                |                |                |                |                |
| -              | g    | mm             | mm  | mm  | mm | mm             | mm             | mm             | mm             | mm             |
| KGSNO12-PP-AS  | 80   | 12             | 43  | 32  | 28 | 32             | 21.5           | 7.6            | 23             | 18             |
| KGSNOS12-PP-AS | 90   | 12             | 43  | 32  | 28 | 32             | 21.5           | 7.6            | 23             | 18             |
| KGSNO16-PP-AS  | 150  | 16             | 53  | 37  | 35 | 40             | 26.5           | 10.1           | 26             | 22             |
| KGSNOS16-PP-AS | 150  | 16             | 53  | 37  | 35 | 40             | 26.5           | 10.1           | 26             | 22             |
| KGSNO20-PP-AS  | 200  | 20             | 60  | 45  | 42 | 45             | 30             | 10             | 32             | 25             |
| KGSNOS20-PP-AS | 250  | 20             | 60  | 45  | 42 | 45             | 30             | 10             | 32             | 25             |
| KGSNO25-PP-AS  | 410  | 25             | 78  | 58  | 51 | 60             | 39             | 12.5           | 40             | 30             |
| KGSNOS25-PP-AS | 520  | 25             | 78  | 58  | 51 | 60             | 39             | 12.5           | 40             | 30             |
| KGSNO30-PP-AS  | 600  | 30             | 87  | 68  | 60 | 68             | 43.5           | 14.3           | 45             | 35             |
| KGSNOS30-PP-AS | 760  | 30             | 87  | 68  | 60 | 68             | 43.5           | 14.3           | 45             | 35             |
| KGSNO40-PP-AS  | 1100 | 40             | 108 | 80  | 77 | 86             | 54             | 18.2           | 58             | 45             |
| KGSNOS40-PP-AS | 1400 | 40             | 108 | 80  | 77 | 86             | 54             | 18.2           | 58             | 45             |
| KGSNO50-PP-AS  | 2870 | 50             | 132 | 100 | 88 | 108            | 66             | 22.7           | 50             | 50             |
| KGSNOS50-PP-AS | 2670 | 50             | 132 | 100 | 88 | 108            | 66             | 22.7           | 50             | 50             |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

<sup>2)</sup> Hole position symmetrical to bearing length L.



From KGSNOS16-PP-AS

KGSNO,  
KGSNOS..-PP-ASKGSNOS..-PP-AS  
View X

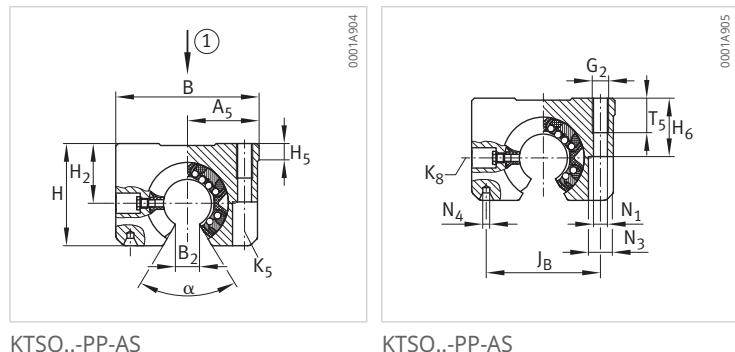
KGSNO12-PP-AS

KGSNO12-PP-AS

3

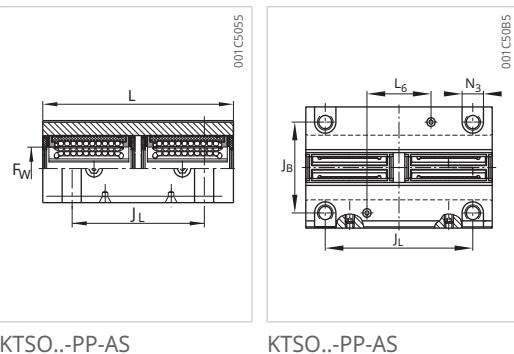
| H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>4</sub><br>DIN 332<br>type A | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | K <sub>8</sub> <sup>2)</sup> | SW  | α  | n | C     | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|-------------------------------------|----------------|------------------------------|------------------------------|-----|----|---|-------|----------------|
|                |                |                |                |                |                                     |                |                              |                              |     |    |   |       |                |
| mm             | mm             | mm             | -              | mm             | -                                   | mm             | -                            | -                            | -   | °  | - | N     | N              |
| 6.1            | 11             | 16.5           | M5             | 4.3            | 1.6x3.35                            | 8              | M4                           | NIP4MZ                       | -   | 78 | 6 | 900   | 1100           |
| 6.1            | 11             | 16.5           | M5             | 4.3            | 1.6x3.35                            | 8              | M4                           | NIP4MZ                       | 2.5 | 78 | 6 | 900   | 1100           |
| 7.5            | 13             | 21             | M6             | 5.3            | 1.6x3.35                            | 10             | M5                           | NIP4MZ                       | -   | 68 | 6 | 1430  | 1550           |
| 7.5            | 13             | 21             | M6             | 5.3            | 1.6x3.35                            | 10             | M5                           | NIP4MZ                       | 2.5 | 68 | 6 | 1430  | 1550           |
| 8              | 18             | 24             | M8             | 6.6            | 2x4.25                              | 11             | M6                           | NIP4MZ                       | -   | 55 | 6 | 2200  | 2310           |
| 8              | 18             | 24             | M8             | 6.6            | 2x4.25                              | 11             | M6                           | NIP4MZ                       | 2.5 | 55 | 6 | 2200  | 2310           |
| 8.8            | 22             | 29             | M10            | 8.4            | 2.5x5.3                             | 15             | M8                           | NIP5MZ                       | -   | 57 | 6 | 3950  | 4300           |
| 8.8            | 22             | 29             | M10            | 8.4            | 2.5x5.3                             | 15             | M8                           | NIP5MZ                       | 3   | 57 | 6 | 3950  | 4300           |
| 9.7            | 22             | 34             | M10            | 8.4            | 2.5x5.3                             | 15             | M8                           | NIP5MZ                       | -   | 57 | 6 | 5900  | 6000           |
| 9.7            | 22             | 34             | M10            | 8.4            | 2.5x5.3                             | 15             | M8                           | NIP5MZ                       | 3   | 57 | 6 | 5900  | 6000           |
| 12.4           | 26             | 44             | M12            | 10.5           | 3.15x6.7                            | 18             | M10                          | NIP5MZ                       | -   | 56 | 6 | 10200 | 9600           |
| 12.4           | 26             | 44             | M12            | 10.5           | 3.15x6.7                            | 18             | M10                          | NIP5MZ                       | 4   | 56 | 6 | 10200 | 9600           |
| 11.1           | 35             | 49             | M16            | 13.5           | 4x8.5                               | 20             | M12                          | NIP5MZ                       | -   | 54 | 6 | 15100 | 13900          |
| 11.1           | 35             | 49             | M16            | 13.5           | 4x8.5                               | 20             | M12                          | NIP5MZ                       | 5   | 54 | 6 | 15100 | 13900          |

## 3.2.6 Linear ball bearing units


KTSO

Tandem arrangement

With segment cut-out


Sealed

Greased, can be relubricated



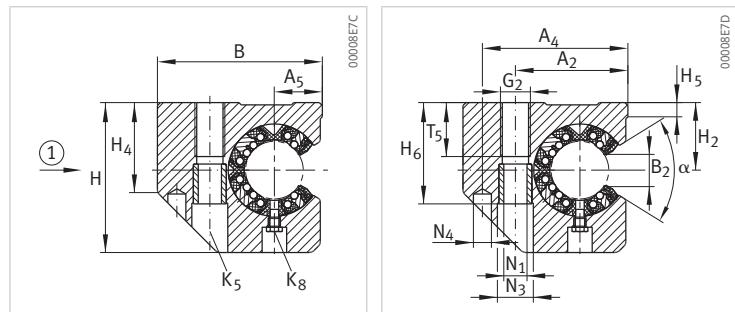
| Designation  | m    | Fw | B  | L   | H  | JB | A5   | B2   | JL <sup>1)</sup> | L6 <sup>1)</sup> | H2 |
|--------------|------|----|----|-----|----|----|------|------|------------------|------------------|----|
|              |      |    |    |     |    |    |      |      |                  |                  |    |
| -            | g    | mm | mm | mm  | mm | mm | mm   | mm   | mm               | mm               | mm |
| KTSO12-PP-AS | 190  | 12 | 43 | 70  | 28 | 32 | 21.5 | 7.6  | 56               | 24               | 18 |
| KTSO16-PP-AS | 320  | 16 | 53 | 78  | 35 | 40 | 26.5 | 10.1 | 64               | 26               | 22 |
| KTSO20-PP-AS | 520  | 20 | 60 | 96  | 42 | 45 | 30   | 10   | 76               | 33               | 25 |
| KTSO25-PP-AS | 1060 | 25 | 78 | 122 | 51 | 60 | 39   | 12.5 | 94               | 44               | 30 |
| KTSO30-PP-AS | 1550 | 30 | 87 | 142 | 60 | 68 | 43.5 | 14.3 | 106              | 54               | 35 |

<sup>1)</sup> Hole position symmetrical to bearing length L.<sup>2)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



| H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>4</sub>    |    | N <sub>3</sub> | K <sub>5</sub> <sup>2)</sup> | K <sub>8</sub> <sup>1)</sup> | α | n    | C     | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|-------------------|----|----------------|------------------------------|------------------------------|---|------|-------|----------------|
|                |                |                |                |                | DIN 332<br>type A |    |                |                              |                              |   |      |       |                |
| mm             | mm             | mm             | -              | mm             | -                 | mm | -              | -                            | -                            | ° | -    | N     | N              |
| 6.1            | 11             | 16.5           | M5             | 4.3            | 1.6x3.35          | 8  | M4             | NIP4MZ                       | 66                           | 6 | 1460 | 2100  |                |
| 7.5            | 13             | 21             | M6             | 5.3            | 1.6x3.35          | 10 | M5             | NIP4MZ                       | 68                           | 6 | 2330 | 3100  |                |
| 8              | 18             | 24             | M8             | 6.6            | 2x4.25            | 11 | M6             | NIP4MZ                       | 55                           | 6 | 3500 | 4600  |                |
| 8.8            | 22             | 29             | M10            | 8.4            | 2.5x5.3           | 15 | M8             | NIP5MZ                       | 57                           | 6 | 6400 | 8600  |                |
| 9.7            | 22             | 34             | M10            | 8.4            | 2.5x5.3           | 15 | M8             | NIP5MZ                       | 57                           | 6 | 9600 | 12000 |                |

## 3.2.7 Linear ball bearing units


KGSC, KGSCS

Side segment cut-out

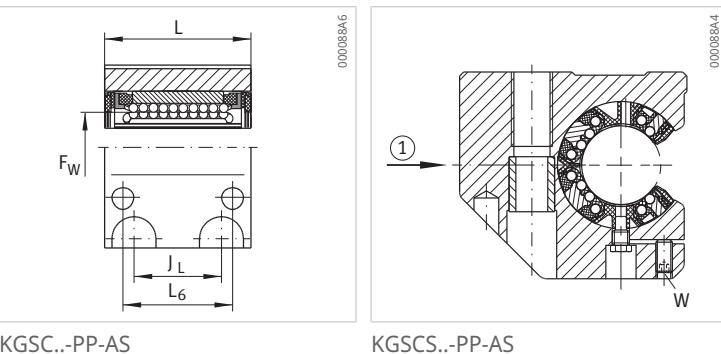
With slot (optional)

Sealed

Greased, can be relubricated



KGSC..-PP-AS, KGSCS..-PP-AS


KGSC..-PP-AS, KGSCS..-PP-AS

| Designation   | m    | F <sub>w</sub> | B   | L   | H   | A <sub>2</sub> | A <sub>4</sub> | A <sub>5</sub> | B <sub>2</sub> | J <sub>L</sub> <sup>1)</sup> | L <sub>6</sub> <sup>1)</sup> | H <sub>2</sub> |    |
|---------------|------|----------------|-----|-----|-----|----------------|----------------|----------------|----------------|------------------------------|------------------------------|----------------|----|
|               |      |                |     |     |     |                |                |                |                |                              |                              |                |    |
| -             | g    | mm             | mm  | mm  | mm  | mm             | mm             | mm             | mm             | mm                           | mm                           | mm             | mm |
| KGSC20-PP-AS  | 350  | 20             | 60  | 47  | 60  | 39             | 51             | 17             | 10             | 30                           | 36                           | 30             |    |
| KGSCS20-PP-AS | 350  | 20             | 60  | 47  | 60  | 39             | 51             | 17             | 10             | 30                           | 36                           | 30             |    |
| KGSC25-PP-AS  | 680  | 25             | 75  | 58  | 72  | 49             | 64             | 21             | 12.5           | 36                           | 45                           | 35             |    |
| KGSCS25-PP-AS | 680  | 25             | 75  | 58  | 72  | 49             | 64             | 21             | 12.5           | 36                           | 45                           | 35             |    |
| KGSC30-PP-AS  | 1000 | 30             | 86  | 68  | 82  | 59             | 76             | 25             | 14.3           | 42                           | 52                           | 40             |    |
| KGSCS30-PP-AS | 1000 | 30             | 86  | 68  | 82  | 59             | 76             | 25             | 14.3           | 42                           | 52                           | 40             |    |
| KGSC40-PP-AS  | 1800 | 40             | 110 | 80  | 100 | 75             | 97             | 32             | 18.2           | 48                           | 60                           | 45             |    |
| KGSCS40-PP-AS | 1800 | 40             | 110 | 80  | 100 | 75             | 97             | 32             | 18.2           | 48                           | 60                           | 45             |    |
| KGSC50-PP-AS  | 2900 | 50             | 127 | 100 | 115 | 88             | 109            | 38             | 22.7           | 62                           | 80                           | 50             |    |
| KGSCS50-PP-AS | 2900 | 50             | 127 | 100 | 115 | 88             | 109            | 38             | 22.7           | 62                           | 80                           | 50             |    |

1) Hole position symmetrical to bearing length L.

2) Centering for pin hole.

3) For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



| H <sub>5</sub> | H <sub>4</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>4</sub> <sup>2)</sup> | N <sub>3</sub> | K <sub>5</sub> <sup>3)</sup> | K <sub>8</sub> <sup>1)</sup> | SW  | α  | η | C     | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|----------------|------------------------------|------------------------------|-----|----|---|-------|----------------|
| mm             | mm             | mm             | mm             | -              | mm             | -                            | mm             | -                            | -                            | -   | °  | - | N     | N              |
| 8.3            | 37.5           | 18             | 42.6           | M10            | 8.4            | 6                            | 15             | M8                           | NIP4MZ                       | -   | 55 | 6 | 2200  | 2310           |
| 8.3            | 37.5           | 18             | 42.6           | M10            | 8.4            | 6                            | 15             | M8                           | NIP4MZ                       | 2.5 | 55 | 6 | 2200  | 2310           |
| 8.2            | 45             | 22             | 50.6           | M12            | 10.5           | 8                            | 18             | M10                          | NIP5MZ                       | -   | 57 | 6 | 3950  | 4300           |
| 8.2            | 45             | 22             | 50.6           | M12            | 10.5           | 8                            | 18             | M10                          | NIP5MZ                       | 3   | 57 | 6 | 3950  | 4300           |
| 9              | 52             | 29             | 55.6           | M16            | 13.5           | 10                           | 20             | M12                          | NIP5MZ                       | -   | 57 | 6 | 5900  | 6000           |
| 9              | 52             | 29             | 55.6           | M16            | 13.5           | 10                           | 20             | M12                          | NIP5MZ                       | 3   | 57 | 6 | 5900  | 6000           |
| 9.5            | 60             | 36             | 67.6           | M20            | 15.5           | 12                           | 24             | M14                          | NIP5MZ                       | -   | 56 | 6 | 10200 | 9600           |
| 9.5            | 60             | 36             | 67.6           | M20            | 15.5           | 12                           | 24             | M14                          | NIP5MZ                       | 4   | 56 | 6 | 10200 | 9600           |
| 8.6            | 70             | 36             | 78.8           | M20            | 17.5           | 12                           | 26             | M16                          | NIP6MZ                       | -   | 54 | 6 | 15100 | 13900          |
| 8.6            | 70             | 36             | 78.8           | M20            | 17.5           | 12                           | 26             | M16                          | NIP6MZ                       | 5   | 54 | 6 | 15100 | 13900          |

## 4 Linear ball bearings and linear ball bearing units of the solid series

### 4.1 Product design

Linear ball bearings of the solid series KB, KBS and KBO as well as the associated linear ball bearing units are highly precise and particularly rigid. They have excellent running behavior.

Linear ball bearings KB, KBS and KBO consist of a hardened and ground outer ring, in which a ball-cage assembly with a plastic cage is integrated.

Throughout the entire deflection range, the balls are guided with high precision by a special spring washer. This ensures that the displacement resistance is low and uniform under difficult operating conditions and regardless of the installation position.

The series KB is closed and designed for use with shafts. KBO has a segment cut-out and is used in conjunction with support rails. KBS has a slot for adjusting the radial clearance.

The bearings have contact seals or gap seals.

48 Linear ball bearings KB, KB..-PP, KB..-PP-AS, KBS, KBS..-PP, KBS..-PP-AS, closed, slotted (KBS) or not slotted (KB), with or without lip seal (PP)



00008DE2

49 Linear ball bearings with segment cut-out KBO, KBO..-PP, KBO..-PP-AS, with or without lip seal (PP)



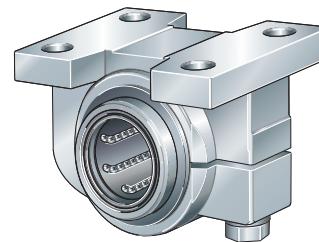
00008AEC

Linear ball bearing units in the solid series are available with an integrated bearing, as well as in a tandem version with two bearings that offers particularly load-bearing properties.

High-strength aluminum or die-cast is used for the housings.

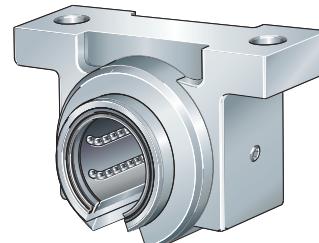
Housings are available in a closed design, with segment cut-out for supported shafts, and with or without a slot. The slotted versions enable the radial clearance to be adjusted using an adjusting screw.

All series have a stop edge and centering holes for pin holes.


The assembled bearings are sealed on both sides, feature initial greasing and can be relubricated through lubricating nipples in the housing.

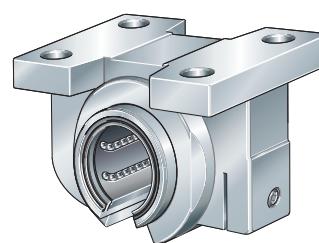
Q50 Closed units KGB..-PP-AS, KGBS..-PP-AS, housing slotted (KGBS) or not slotted (KGB), bearing with lip seal




000089A5

Q51 Closed units KGBA..-PP-AS, KGBAS..-PP-AS, housing slotted (KGBAS) or not slotted (KGBA), bearing with lip seal




000089C4

Q52 Unit with segment cut-out KGBO..-PP-AS, with lip seal



00008B01

Q53 Unit with segment cut-out KGBAO..-PP-AS, with lip seal

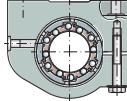
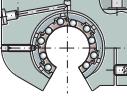
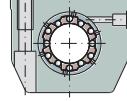
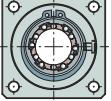



00008B09

54 Closed unit KTB..-PP-AS, bearing in tandem arrangement, with lip seal



000089B6





55 Closed unit KFB..-B-PP-AS, housing with flange, bearing with lip seal



00019FE0

## 14 Linear ball bearings and linear ball bearing units of the solid series

| Model series                   | Characteristic                                                                                                                                                                                    |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KB<br>KB..-PP<br>KB..-PP-AS    | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>With or without lip seal, depending on the version</li> <li>Can also be relubricated</li> </ul>                               |
| KBS<br>KBS..-PP<br>KBS..-PP-AS | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>With or without lip seal, depending on the version</li> <li>Can also be relubricated</li> <li>Slotted</li> </ul>              |
| KBO<br>KBO..-PP<br>KBO..-PP-AS | <ul style="list-style-type: none"> <li>Linear ball bearing</li> <li>With or without lip seal, depending on the version</li> <li>Can also be relubricated</li> <li>With segment cut-out</li> </ul> |
| KGB..-PP-AS                    | <ul style="list-style-type: none"> <li>Closed</li> <li>Can be relubricated</li> </ul>                                                                                                             |
| KGBS..-PP-AS                   | <ul style="list-style-type: none"> <li>Closed</li> <li>Housing slotted</li> <li>Can be relubricated</li> </ul>                                                                                    |
| KGBO..-PP-AS                   | <ul style="list-style-type: none"> <li>With segment cut-out</li> <li>Can be relubricated</li> </ul>                                                                                               |
| KGBA..-PP-AS                   | <ul style="list-style-type: none"> <li>Closed</li> <li>Can be relubricated</li> </ul>                                                                                                             |

| Model series  |                                                                                   | Characteristic                                                                                                          |
|---------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| KGBAS..-PP-AS |  | <ul style="list-style-type: none"> <li>• Closed</li> <li>• Housing slotted</li> <li>• Can be relubricated</li> </ul>    |
| KGBAO..-PP-AS |  | <ul style="list-style-type: none"> <li>• With segment cut-out</li> <li>• Can be relubricated</li> </ul>                 |
| KTB..-PP-AS   |  | <ul style="list-style-type: none"> <li>• Closed</li> <li>• Tandem arrangement</li> <li>• Can be relubricated</li> </ul> |
| KFB..-B-PP-AS |  | <ul style="list-style-type: none"> <li>• Closed</li> <li>• Can be relubricated</li> </ul>                               |

4

### Further information

- Product tables ►60|4.2
- Shafts ►82|6.1
- Support rails ►101|7.1
- Shaft support blocks ►117|8.1

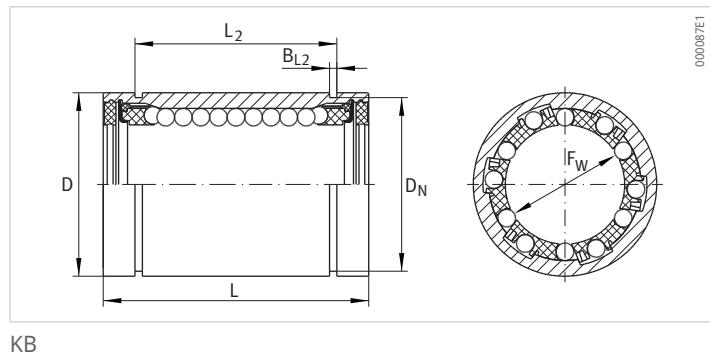
## 4.2 Product tables

### 4.2.1 Explanations

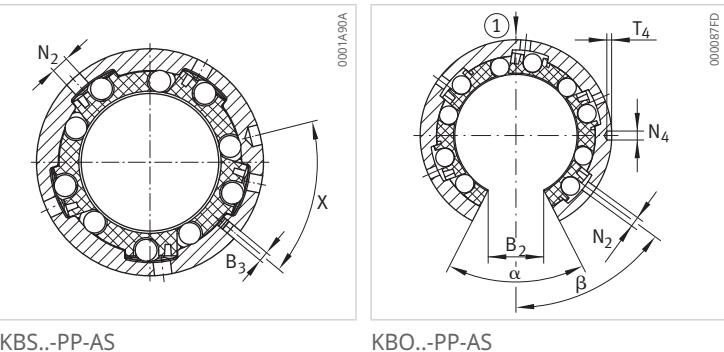
|                 |    |                                   |
|-----------------|----|-----------------------------------|
| (1)             | -  | Main load direction               |
| A <sub>3</sub>  | mm | Lubrication connection distance   |
| A <sub>5</sub>  | mm | Stop side distance                |
| B               | mm | Width of the housing              |
| B <sub>1</sub>  | mm | Width of housing flange           |
| B <sub>3</sub>  | mm | Slot                              |
| B <sub>L2</sub> | mm | Width of mounting groove          |
| C               | N  | Basic dynamic load rating         |
| C <sub>0</sub>  | N  | Basic static load rating          |
| D               | mm | Outside diameter                  |
| D <sub>1</sub>  | mm | Flange diameter                   |
| D <sub>2</sub>  | mm | Diameter of housing flange        |
| D <sub>N</sub>  | mm | Diameter of mounting groove       |
| F <sub>W</sub>  | mm | Inner envelope diameter           |
| G <sub>2</sub>  | -  | Connecting thread                 |
| G <sub>3</sub>  | -  | Connecting thread                 |
| H               | mm | Height of the housing             |
| H <sub>2</sub>  | mm | Center distance                   |
| H <sub>4</sub>  | mm | Height of housing flange          |
| H <sub>5</sub>  | mm | Height of stop edge               |
| H <sub>6</sub>  | mm | Depth of mounting hole            |
| J <sub>B</sub>  | mm | Mounting hole distance            |
| J <sub>L</sub>  | mm | Distance between mounting holes   |
| J <sub>L4</sub> | mm | Lubrication hole distance         |
| K <sub>5</sub>  | -  | Fixing screw                      |
| K <sub>8</sub>  | -  | Lubrication connection            |
| L               | mm | Length of the housing             |
| L               | mm | Length of the linear ball bearing |
| L               | mm | Lower limit deviation             |
| L <sub>2</sub>  | mm | Connection dimension              |
| L <sub>4</sub>  | mm | Length of the housing section     |
| L <sub>5</sub>  | mm | Housing width                     |
| L <sub>6</sub>  | mm | Pin hole distance                 |
| L <sub>7</sub>  | mm | Offset                            |
| L <sub>B</sub>  | mm | Centering diameter                |
| m               | g  | Mass                              |
| n               | -  | Number of ball rows               |
| N <sub>1</sub>  | mm | Diameter of the mounting hole     |
| N <sub>2</sub>  | mm | Diameter of the lubrication hole  |
| N <sub>3</sub>  | mm | Diameter of the counterbore       |
| N <sub>4</sub>  | mm | Diameter of the fixing hole       |
| U               | mm | Upper limit deviation             |
| W               | mm | Width across flats                |
| α               | °  | Segment cut-out angle             |
| β               | °  | Position of the lubrication hole  |
| X               | °  | Position from slot to fixing hole |



## 4.2.2 Linear ball bearings KB, KBS, KBO


closed

With segment cut-out


With slot (optional)

Sealed (optional)

Non-greased, greased (PP), greased and can be relubricated (PP-AS)



| Designation | m   | F <sub>w</sub> |        |        |    | D  | L    | B <sub>2</sub> | L <sub>2</sub> | B <sub>L2</sub> <sup>1)</sup> | B <sub>3</sub> |
|-------------|-----|----------------|--------|--------|----|----|------|----------------|----------------|-------------------------------|----------------|
|             |     |                | -      | U      | L  |    |      |                |                |                               |                |
| -           | g   | mm             | mm     | mm     | mm | mm | mm   | mm             | mm             | mm                            | mm             |
| KB12        | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | -                             |                |
| KB12-PP     | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | -                             |                |
| KB12-PP-AS  | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | -                             |                |
| KBS12       | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | 1                             |                |
| KBS12-PP    | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | 1                             |                |
| KBS12-PP-AS | 40  | 12             | +0.008 | 0      | 22 | 32 | -    | 22.6           | 1.3            | 1                             |                |
| KBO12       | 30  | 12             | +0.008 | 0      | 22 | 32 | 7.7  | 22.6           | 1.3            | -                             |                |
| KBO12-PP    | 30  | 12             | +0.008 | 0      | 22 | 32 | 7.7  | 22.6           | 1.3            | -                             |                |
| KBO12-PP-AS | 30  | 12             | +0.008 | 0      | 22 | 32 | 7.7  | 22.6           | 1.3            | -                             |                |
| KB16        | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | -                             |                |
| KB16-PP     | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | -                             |                |
| KB16-PP-AS  | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | -                             |                |
| KBS16       | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | 1                             |                |
| KBS16-PP    | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | 1                             |                |
| KBS16-PP-AS | 50  | 16             | +0.009 | -0.001 | 26 | 36 | -    | 24.6           | 1.3            | 1                             |                |
| KBO16       | 40  | 16             | +0.009 | -0.001 | 26 | 36 | 10.1 | 24.6           | 1.3            | -                             |                |
| KBO16-PP    | 40  | 16             | +0.009 | -0.001 | 26 | 36 | 10.1 | 24.6           | 1.3            | -                             |                |
| KBO16-PP-AS | 40  | 16             | +0.009 | -0.001 | 26 | 36 | 10.1 | 24.6           | 1.3            | -                             |                |
| KB20        | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | -                             |                |
| KB20-PP     | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | -                             |                |
| KB20-PP-AS  | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | -                             |                |
| KBS20       | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | 1                             |                |
| KBS20-PP    | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | 1                             |                |
| KBS20-PP-AS | 90  | 20             | +0.009 | -0.001 | 32 | 45 | -    | 31.2           | 1.6            | 1                             |                |
| KBO20       | 70  | 20             | +0.009 | -0.001 | 32 | 45 | 10   | 31.2           | 1.6            | -                             |                |
| KBO20-PP    | 70  | 20             | +0.009 | -0.001 | 32 | 45 | 10   | 31.2           | 1.6            | -                             |                |
| KBO20-PP-AS | 70  | 20             | +0.009 | -0.001 | 32 | 45 | 10   | 31.2           | 1.6            | -                             |                |
| KB25        | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | -                             |                |
| KB25-PP     | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | -                             |                |
| KB25-PP-AS  | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | -                             |                |
| KBS25       | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | 1                             |                |
| KBS25-PP    | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | 1                             |                |
| KBS25-PP-AS | 190 | 25             | +0.011 | -0.001 | 40 | 58 | -    | 43.7           | 1.85           | 1                             |                |
| KBO25       | 150 | 25             | +0.011 | -0.001 | 40 | 58 | 12.5 | 43.7           | 1.85           | -                             |                |
| KBO25-PP    | 150 | 25             | +0.011 | -0.001 | 40 | 58 | 12.5 | 43.7           | 1.85           | -                             |                |
| KBO25-PP-AS | 150 | 25             | +0.011 | -0.001 | 40 | 58 | 12.5 | 43.7           | 1.85           | -                             |                |
| KB30        | 300 | 30             | +0.011 | -0.001 | 47 | 68 | -    | 51.7           | 1.85           | -                             |                |
| KB30-PP     | 300 | 30             | +0.011 | -0.001 | 47 | 68 | -    | 51.7           | 1.85           | -                             |                |
| KB30-PP-AS  | 300 | 30             | +0.011 | -0.001 | 47 | 68 | -    | 51.7           | 1.85           | -                             |                |
| KBS30       | 300 | 30             | +0.011 | -0.001 | 47 | 68 | -    | 51.7           | 1.85           | 1                             |                |



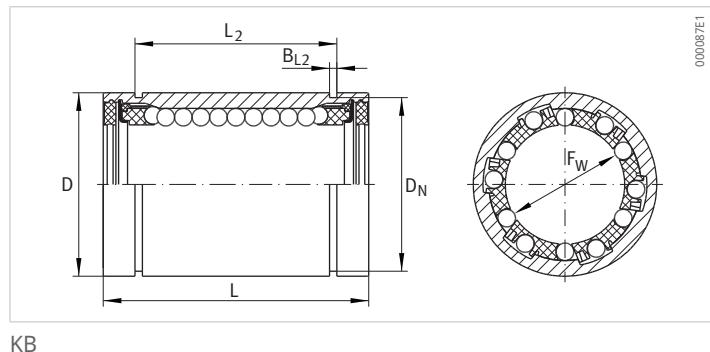
KBS..-PP-AS

KBO..-PP-AS

| D <sub>N</sub> <sup>1)</sup><br>mm | T <sub>4</sub><br>mm | N <sub>4</sub><br>mm | N <sub>2</sub><br>mm | α<br>° | β<br>° | X<br>° | n<br>- | C<br>- | C <sub>0</sub><br>min | C<br>Max. | C <sub>0</sub><br>Max. |
|------------------------------------|----------------------|----------------------|----------------------|--------|--------|--------|--------|--------|-----------------------|-----------|------------------------|
|                                    |                      |                      |                      |        |        |        |        |        | N                     | N         | N                      |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | -      | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | -      | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | -      | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | 55     | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | 55     | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | -                    | -                    | 1.5                  | -      | -      | 55     | 5      | 540    | 385                   | 640       | 570                    |
| 21                                 | 1.2                  | 2.2                  | 1.5                  | 78     | 64     | -      | 4      | -      | -                     | 600       | 445                    |
| 21                                 | 1.2                  | 2.2                  | 1.5                  | 78     | 64     | -      | 4      | -      | -                     | 600       | 445                    |
| 21                                 | 1.2                  | 2.2                  | 1.5                  | 78     | 64     | -      | 4      | -      | -                     | 600       | 445                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | -      | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | -      | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | -      | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | 54     | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | 54     | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | -                    | -                    | 2                    | -      | -      | 54     | 5      | 710    | 530                   | 840       | 780                    |
| 24.9                               | 1.2                  | 2.2                  | 2                    | 78     | 64     | -      | 4      | -      | -                     | 800       | 620                    |
| 24.9                               | 1.2                  | 2.2                  | 2                    | 78     | 64     | -      | 4      | -      | -                     | 800       | 620                    |
| 24.9                               | 1.2                  | 2.2                  | 2                    | 78     | 64     | -      | 4      | -      | -                     | 800       | 620                    |
| 30.3                               | -                    | -                    | 2                    | -      | -      | -      | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | -                    | -                    | 2                    | -      | -      | -      | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | -                    | -                    | 2                    | -      | -      | -      | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | -                    | -                    | 2                    | -      | -      | 62.5   | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | -                    | -                    | 2                    | -      | -      | 62.5   | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | -                    | -                    | 2                    | -      | -      | 62.5   | 6      | 1570   | 1230                  | 1660      | 1570                   |
| 30.3                               | 1.2                  | 2.2                  | 2                    | 60     | 52     | -      | 5      | -      | -                     | 1600      | 1280                   |
| 30.3                               | 1.2                  | 2.2                  | 2                    | 60     | 52     | -      | 5      | -      | -                     | 1600      | 1280                   |
| 30.3                               | 1.2                  | 2.2                  | 2                    | 60     | 52     | -      | 5      | -      | -                     | 1600      | 1280                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | 62     | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | 62     | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | -                    | -                    | 2.5                  | -      | -      | 62     | 6      | 2800   | 2220                  | 2950      | 2850                   |
| 37.5                               | 1.5                  | 3                    | 2.5                  | 60     | 53     | -      | 5      | -      | -                     | 2850      | 2300                   |
| 37.5                               | 1.5                  | 3                    | 2.5                  | 60     | 53     | -      | 5      | -      | -                     | 2850      | 2300                   |
| 37.5                               | 1.5                  | 3                    | 2.5                  | 60     | 53     | -      | 5      | -      | -                     | 2850      | 2300                   |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 3600   | 2850                  | 3800      | 3600                   |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 3600   | 2850                  | 3800      | 3600                   |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | -      | 6      | 3600   | 2850                  | 3800      | 3600                   |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | 64     | 6      | 3600   | 2850                  | 3800      | 3600                   |

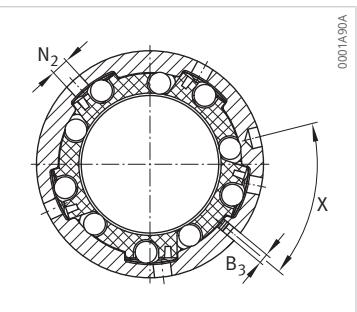
## 4.2.2 Linear ball bearings KB, KBS, KBO

closed

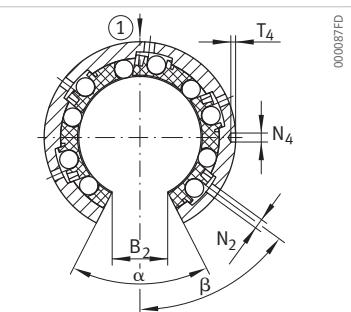

With segment cut-out

With slot (optional)

Sealed (optional)


Non-greased, greased (PP), greased and can be relubricated (PP-AS)

4




| Designation | m    | F <sub>w</sub> |        |        | D  | L   | B <sub>2</sub> | L <sub>2</sub> | B <sub>L2</sub> <sup>1)</sup> | B <sub>3</sub> |
|-------------|------|----------------|--------|--------|----|-----|----------------|----------------|-------------------------------|----------------|
|             |      | -              | U      | L      |    |     |                |                |                               |                |
| -           | g    | mm             | mm     | mm     | mm | mm  | mm             | mm             | mm                            | mm             |
| KBS30-PP    | 300  | 30             | +0.011 | -0.001 | 47 | 68  | -              | 51.7           | 1.85                          | 1              |
| KBS30-PP-AS | 300  | 30             | +0.011 | -0.001 | 47 | 68  | -              | 51.7           | 1.85                          | 1              |
| KBO30       | 240  | 30             | +0.011 | -0.001 | 47 | 68  | 13.6           | 51.7           | 1.85                          | -              |
| KBO30-PP    | 240  | 30             | +0.011 | -0.001 | 47 | 68  | 13.6           | 51.7           | 1.85                          | -              |
| KBO30-PP-AS | 240  | 30             | +0.011 | -0.001 | 47 | 68  | 13.6           | 51.7           | 1.85                          | -              |
| KB40        | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | -              |
| KB40-PP     | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | -              |
| KB40-PP-AS  | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | -              |
| KBS40       | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | 1              |
| KBS40-PP    | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | 1              |
| KBS40-PP-AS | 600  | 40             | +0.013 | -0.002 | 62 | 80  | -              | 60.3           | 2.15                          | 1              |
| KBO40       | 520  | 40             | +0.013 | -0.002 | 62 | 80  | 18.2           | 60.3           | 2.15                          | -              |
| KBO40-PP    | 520  | 40             | +0.013 | -0.002 | 62 | 80  | 18.2           | 60.3           | 2.15                          | -              |
| KBO40-PP-AS | 520  | 40             | +0.013 | -0.002 | 62 | 80  | 18.2           | 60.3           | 2.15                          | -              |
| KB50        | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | -              |
| KB50-PP     | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | -              |
| KB50-PP-AS  | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | -              |
| KBS50       | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | 1              |
| KBS50-PP    | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | 1              |
| KBS50-PP-AS | 1000 | 50             | +0.013 | -0.002 | 75 | 100 | -              | 77.3           | 2.65                          | 1              |
| KBO50       | 850  | 50             | +0.013 | -0.002 | 75 | 100 | 22.7           | 77.3           | 2.65                          | -              |
| KBO50-PP    | 850  | 50             | +0.013 | -0.002 | 75 | 100 | 22.7           | 77.3           | 2.65                          | -              |
| KBO50-PP-AS | 850  | 50             | +0.013 | -0.002 | 75 | 100 | 22.7           | 77.3           | 2.65                          | -              |

<sup>1)</sup> Groove dimensions suitable for snap rings according to DIN 471.



KBS..-PP-AS



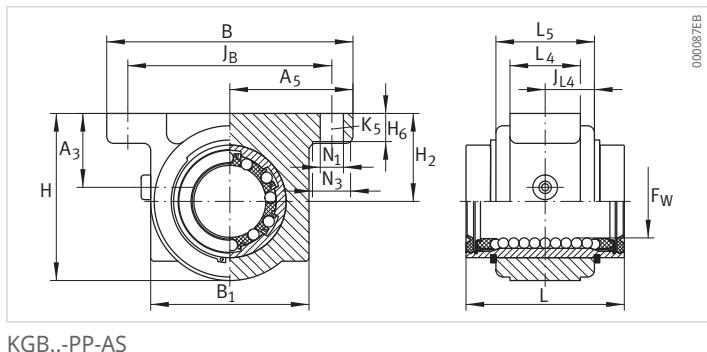
KBO..-PP-AS

| D <sub>N</sub> <sup>1)</sup><br>mm | T <sub>4</sub><br>mm | N <sub>4</sub><br>mm | N <sub>2</sub><br>mm | α<br>° | β<br>° | X<br>° | n<br>- | C<br>- | C <sub>0</sub><br>min | C<br>- | C <sub>0</sub><br>Max. |
|------------------------------------|----------------------|----------------------|----------------------|--------|--------|--------|--------|--------|-----------------------|--------|------------------------|
|                                    |                      |                      |                      |        |        |        |        |        |                       |        |                        |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | 64     | 6      | 3600   | 2850                  | 3800   | 3600                   |
| 44.5                               | -                    | -                    | 2.5                  | -      | -      | 64     | 6      | 3600   | 2850                  | 3800   | 3600                   |
| 44.5                               | 1.5                  | 3                    | 2.5                  | 54     | 55     | -      | 5      | -      | -                     | 3700   | 3000                   |
| 44.5                               | 1.5                  | 3                    | 2.5                  | 54     | 55     | -      | 5      | -      | -                     | 3700   | 3000                   |
| 44.5                               | 1.5                  | 3                    | 2.5                  | 54     | 55     | -      | 5      | -      | -                     | 3700   | 3000                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | -      | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | -      | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | -      | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | 64     | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | 64     | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | -                    | -                    | 3                    | -      | -      | 64     | 6      | 6000   | 4400                  | 6400   | 5600                   |
| 59                                 | 1.5                  | 3                    | 3                    | 54     | 54     | -      | 5      | -      | -                     | 6100   | 4600                   |
| 59                                 | 1.5                  | 3                    | 3                    | 54     | 54     | -      | 5      | -      | -                     | 6100   | 4600                   |
| 59                                 | 1.5                  | 3                    | 3                    | 54     | 54     | -      | 5      | -      | -                     | 6100   | 4600                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | -      | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | -      | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | -      | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | 64     | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | 64     | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | -                    | -                    | 4                    | -      | -      | 64     | 6      | 8700   | 6300                  | 9200   | 8000                   |
| 72                                 | 1.5                  | 3                    | 4                    | 54     | 54     | -      | 5      | -      | -                     | 8900   | 6600                   |
| 72                                 | 1.5                  | 3                    | 4                    | 54     | 54     | -      | 5      | -      | -                     | 8900   | 6600                   |
| 72                                 | 1.5                  | 3                    | 4                    | 54     | 54     | -      | 5      | -      | -                     | 8900   | 6600                   |

## 4.2.3 Linear ball bearing units

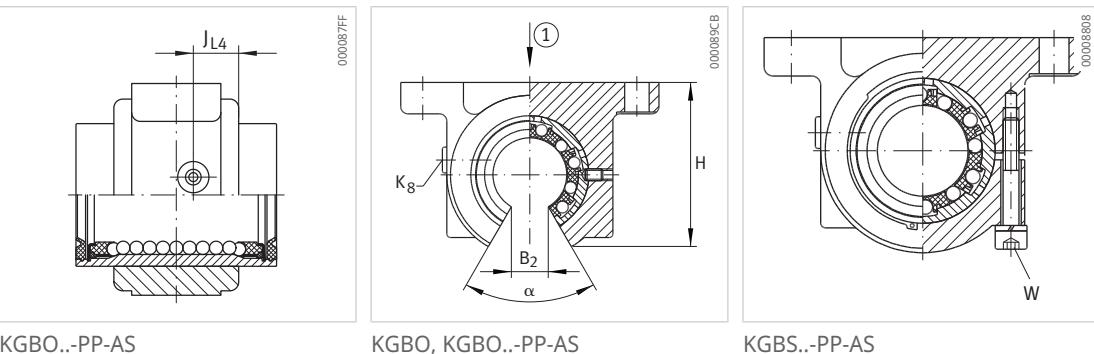
KGB, KGBS, KGBO

closed


With segment cut-out

With slot (optional)

Sealed


Greased

Can be relubricated



| Designation  | m<br>- | F <sub>w</sub><br>- | F <sub>w</sub> |        |        | B<br>h12 | L   | H    | J <sub>B</sub> |       |       | B <sub>1</sub> | A <sub>5</sub><br>±0.02 | B <sub>2</sub> |
|--------------|--------|---------------------|----------------|--------|--------|----------|-----|------|----------------|-------|-------|----------------|-------------------------|----------------|
|              |        |                     | U              | L      | U      |          |     |      | U              | L     | U     |                |                         |                |
|              |        |                     | g              | mm     | mm     |          |     |      | mm             | mm    | mm    |                |                         |                |
| KGB12-PP-AS  | 100    | 12                  | +0.008         | 0      | +0.008 | 52       | 32  | 35.8 | 42             | +0.15 | -0.15 | 31.6           | 26                      | -              |
| KGBS12-PP-AS | 100    | 12                  | +0.008         | 0      | +0.008 | 52       | 32  | 35.8 | 42             | +0.15 | -0.15 | 31.6           | 26                      | -              |
| KGBO12-PP-AS | 90     | 30                  | +0.008         | 0      | +0.008 | 52       | 32  | 32   | 42             | +0.15 | -0.15 | 31.6           | 26                      | 7.7            |
| KGB16-PP-AS  | 140    | 16                  | +0.009         | -0.001 | +0.009 | 56       | 36  | 37.5 | 46             | +0.15 | -0.15 | 35             | 28                      | -              |
| KGBS16-PP-AS | 140    | 16                  | +0.009         | -0.001 | +0.009 | 56       | 36  | 37.5 | 46             | +0.15 | -0.15 | 35             | 28                      | -              |
| KGBO16-PP-AS | 120    | 50                  | +0.009         | -0.001 | +0.009 | 56       | 36  | 33.5 | 46             | +0.15 | -0.15 | 35             | 28                      | 10.1           |
| KGB20-PP-AS  | 300    | 20                  | +0.009         | -0.001 | +0.009 | 70       | 45  | 47.5 | 58             | +0.15 | -0.15 | 45             | 35                      | -              |
| KGBS20-PP-AS | 300    | 20                  | +0.009         | -0.001 | +0.009 | 70       | 45  | 47.5 | 58             | +0.15 | -0.15 | 45             | 35                      | -              |
| KGBO20-PP-AS | 250    | 25                  | +0.009         | -0.001 | +0.009 | 70       | 45  | 45   | 58             | +0.15 | -0.15 | 45             | 35                      | 10             |
| KGB25-PP-AS  | 580    | 25                  | +0.011         | -0.001 | +0.011 | 80       | 58  | 57.5 | 68             | +0.15 | -0.15 | 55             | 40                      | -              |
| KGBS25-PP-AS | 580    | 25                  | +0.011         | -0.001 | +0.011 | 80       | 58  | 57.5 | 68             | +0.15 | -0.15 | 55             | 40                      | -              |
| KGBO25-PP-AS | 490    | 40                  | +0.011         | -0.001 | +0.011 | 80       | 58  | 54.5 | 68             | +0.15 | -0.15 | 55             | 40                      | 12.5           |
| KGB30-PP-AS  | 900    | 30                  | +0.011         | -0.001 | +0.011 | 88       | 68  | 66.5 | 76             | +0.2  | -0.2  | 63             | 44                      | -              |
| KGBS30-PP-AS | 900    | 30                  | +0.011         | -0.001 | +0.011 | 88       | 68  | 66.5 | 76             | +0.2  | -0.2  | 63             | 44                      | -              |
| KGBO30-PP-AS | 780    | 20                  | +0.011         | -0.001 | +0.011 | 88       | 68  | 63.5 | 76             | +0.2  | -0.2  | 63             | 44                      | 13.6           |
| KGB40-PP-AS  | 1430   | 40                  | +0.013         | -0.002 | +0.013 | 108      | 80  | 83.5 | 94             | +0.2  | -0.2  | 77             | 54                      | -              |
| KGBS40-PP-AS | 1430   | 40                  | +0.013         | -0.002 | +0.013 | 108      | 80  | 83.5 | 94             | +0.2  | -0.2  | 77             | 54                      | -              |
| KGBO40-PP-AS | 1280   | 12                  | +0.013         | -0.002 | +0.013 | 108      | 80  | 79.5 | 94             | +0.2  | -0.2  | 77             | 54                      | 18.2           |
| KGB50-PP-AS  | 2780   | 50                  | +0.013         | -0.002 | +0.013 | 135      | 100 | 98   | 116            | +0.2  | -0.2  | 96             | 67.5                    | -              |
| KGBS50-PP-AS | 2780   | 50                  | +0.013         | -0.002 | +0.013 | 135      | 100 | 98   | 116            | +0.2  | -0.2  | 96             | 67.5                    | -              |
| KGBO50-PP-AS | 2460   | 16                  | +0.013         | -0.002 | +0.013 | 135      | 100 | 93   | 116            | +0.2  | -0.2  | 96             | 67.5                    | 22.7           |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



KGBO...PP-AS

KGBO, KGBO...PP-AS

KGBS..-PP-AS

| L <sub>5</sub> | L <sub>4</sub> | J <sub>L4</sub> | H <sub>2</sub><br>±0.015 | A <sub>3</sub> | H <sub>6</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | α  | SW | K <sub>8</sub> | n | C    |      | C <sub>0</sub> |
|----------------|----------------|-----------------|--------------------------|----------------|----------------|----------------|----------------|------------------------------|----|----|----------------|---|------|------|----------------|
|                |                |                 |                          |                |                |                |                |                              |    |    |                |   | -    | N    | N              |
| 20             | 12             | 10              | 20                       | 15             | 6              | 5.5            | 10             | M5                           | -  | -  | NIPA1          | 5 | 540  | 385  |                |
| 20             | 12             | 10              | 20                       | 15             | 6              | 5.5            | 10             | M5                           | -  | 2  | NIPA1          | 5 | 540  | 385  |                |
| 20             | 12             | 6.5             | 20                       | 15             | 6              | 5.5            | 10             | M5                           | 78 | -  | NIPA1          | 4 | 600  | 445  |                |
| 22             | 15             | 11              | 20                       | 15             | 6              | 5.5            | 10             | M5                           | -  | -  | NIPA1          | 5 | 710  | 530  |                |
| 22             | 15             | 11              | 20                       | 15             | 6              | 5.5            | 10             | M5                           | -  | 2  | NIPA1          | 5 | 710  | 530  |                |
| 22             | 15             | 6.5             | 20                       | 15             | 6              | 5.5            | 10             | M5                           | 78 | -  | NIPA1          | 4 | 800  | 620  |                |
| 28             | 20             | 14              | 25                       | 21             | 8              | 6.6            | 11             | M6                           | -  | -  | NIPA1          | 6 | 1570 | 1230 |                |
| 28             | 20             | 14              | 25                       | 21             | 8              | 6.6            | 11             | M6                           | -  | 3  | NIPA1          | 6 | 1570 | 1230 |                |
| 28             | 20             | 9.5             | 25                       | 21             | 8              | 6.6            | 11             | M6                           | 60 | -  | NIPA1          | 5 | 1600 | 1280 |                |
| 40             | 28             | 20              | 30                       | 23             | 10             | 6.6            | 11             | M6                           | -  | -  | NIPA1          | 6 | 2800 | 2220 |                |
| 40             | 28             | 20              | 30                       | 23             | 10             | 6.6            | 11             | M6                           | -  | 3  | NIPA1          | 6 | 2800 | 2200 |                |
| 40             | 28             | 15              | 30                       | 23             | 10             | 6.6            | 11             | M6                           | 60 | -  | NIPA1          | 5 | 2850 | 2330 |                |
| 48             | 32             | 24              | 35                       | 25             | 10             | 6.6            | 11             | M6                           | -  | -  | NIPA2          | 6 | 3600 | 2850 |                |
| 48             | 32             | 24              | 35                       | 25             | 10             | 6.6            | 11             | M6                           | -  | 4  | NIPA2          | 6 | 3600 | 2850 |                |
| 48             | 32             | 19              | 35                       | 25             | 10             | 6.6            | 11             | M6                           | 54 | -  | NIPA2          | 5 | 3700 | 3000 |                |
| 56             | 40             | 28              | 45                       | 30             | 12             | 9              | 15             | M8                           | -  | -  | NIPA2          | 6 | 6000 | 4400 |                |
| 56             | 40             | 28              | 45                       | 30             | 12             | 9              | 15             | M8                           | -  | 4  | NIPA2          | 6 | 6000 | 4400 |                |
| 56             | 40             | 23              | 45                       | 30             | 12             | 9              | 15             | M8                           | 54 | -  | NIPA2          | 5 | 6100 | 4600 |                |
| 72             | 52             | 36              | 50                       | 34             | 14             | 11             | 18             | M10                          | -  | -  | NIPA2          | 6 | 8700 | 6300 |                |
| 72             | 52             | 36              | 50                       | 34             | 14             | 11             | 18             | M10                          | -  | 5  | NIPA2          | 6 | 8700 | 6300 |                |
| 72             | 52             | 28              | 50                       | 34             | 14             | 11             | 18             | M10                          | 54 | -  | NIPA2          | 5 | 8900 | 6600 |                |

## 4.2.4 Linear ball bearing units

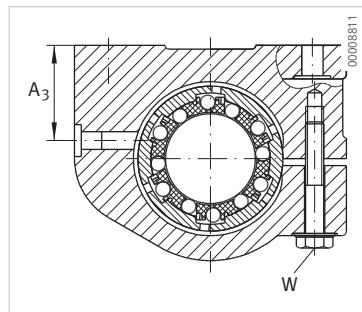
KGBA, KGBAS, KGBAO

closed

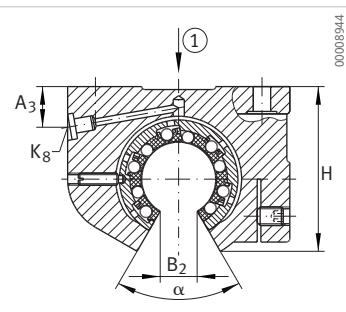

With segment cut-out

With slot (optional)

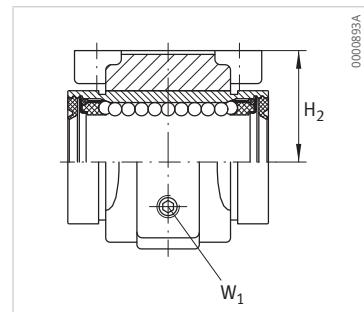
Sealed


Greased

Can be relubricated




| Designation   | m<br>g | F <sub>w</sub> |        |        | B<br>h12 | L   | H    | J <sub>B</sub> |       |       | A <sub>5</sub> | B <sub>2</sub> | L <sub>4</sub> | J <sub>L</sub> |       |       |
|---------------|--------|----------------|--------|--------|----------|-----|------|----------------|-------|-------|----------------|----------------|----------------|----------------|-------|-------|
|               |        | -              | U      | L      |          |     |      | -              | U     | L     |                |                |                | -              | U     | L     |
|               |        | mm             | mm     | mm     |          |     |      | mm             | mm    | mm    |                |                |                | mm             | mm    | mm    |
| KGBA12-PP-AS  | 80     | 12             | +0.008 | 0      | 42       | 32  | 34   | 32             | +0.15 | -0.15 | 21             | -              | 32             | 23             | +0.15 | -0.15 |
| KGBAS12-PP-AS | 80     | 12             | +0.008 | 0      | 42       | 32  | 34   | 32             | +0.15 | -0.15 | 21             | -              | -              | 23             | +0.15 | -0.15 |
| KGBAO12-PP-AS | 70     | 12             | +0.008 | 0      | 42       | 32  | 30.5 | 32             | +0.15 | -0.15 | 21             | 7.7            | -              | 23             | +0.15 | -0.15 |
| KGBA16-PP-AS  | 120    | 16             | +0.009 | -0.001 | 50       | 36  | 41   | 40             | +0.15 | -0.15 | 25             | -              | 35             | 26             | +0.15 | -0.15 |
| KGBAS16-PP-AS | 120    | 16             | +0.009 | -0.001 | 50       | 36  | 41   | 40             | +0.15 | -0.15 | 25             | -              | -              | 26             | +0.15 | -0.15 |
| KGBAO16-PP-AS | 100    | 16             | +0.009 | -0.001 | 50       | 36  | 37   | 40             | +0.15 | -0.15 | 25             | 10.1           | -              | 26             | +0.15 | -0.15 |
| KGBA20-PP-AS  | 200    | 20             | +0.009 | -0.001 | 60       | 45  | 47.5 | 45             | +0.15 | -0.15 | 30             | -              | 42             | 32             | +0.15 | -0.15 |
| KGBAS20-PP-AS | 200    | 20             | +0.009 | -0.001 | 60       | 45  | 47.5 | 45             | +0.15 | -0.15 | 30             | -              | -              | 32             | +0.15 | -0.15 |
| KGBAO20-PP-AS | 170    | 20             | +0.009 | -0.001 | 60       | 45  | 44.5 | 45             | +0.15 | -0.15 | 30             | 10             | -              | 32             | +0.15 | -0.15 |
| KGBA25-PP-AS  | 410    | 25             | +0.011 | -0.001 | 74       | 58  | 60   | 60             | +0.2  | -0.2  | 37             | -              | 54             | 40             | +0.2  | -0.2  |
| KGBAS25-PP-AS | 410    | 25             | +0.011 | -0.001 | 74       | 58  | 60   | 60             | +0.2  | -0.2  | 37             | -              | -              | 40             | +0.2  | -0.2  |
| KGBAO25-PP-AS | 350    | 25             | +0.011 | -0.001 | 74       | 58  | 56   | 60             | +0.2  | -0.2  | 37             | 12.5           | -              | 40             | +0.2  | -0.2  |
| KGBA30-PP-AS  | 610    | 30             | +0.011 | -0.001 | 84       | 68  | 67   | 68             | +0.2  | -0.2  | 42             | -              | 60             | 45             | +0.2  | -0.2  |
| KGBAS30-PP-AS | 610    | 30             | +0.011 | -0.001 | 84       | 68  | 67   | 68             | +0.2  | -0.2  | 42             | -              | -              | 45             | +0.2  | -0.2  |
| KGBAO30-PP-AS | 530    | 30             | +0.011 | -0.001 | 84       | 68  | 63.5 | 68             | +0.2  | -0.2  | 42             | 13.6           | -              | 45             | +0.2  | -0.2  |
| KGBA40-PP-AS  | 1200   | 40             | +0.013 | -0.002 | 108      | 80  | 87   | 86             | +0.2  | -0.2  | 54             | -              | 78             | 58             | +0.2  | -0.2  |
| KGBAS40-PP-AS | 1200   | 40             | +0.013 | -0.002 | 108      | 80  | 87   | 86             | +0.2  | -0.2  | 54             | -              | -              | 58             | +0.2  | -0.2  |
| KGBAO40-PP-AS | 1070   | 40             | +0.013 | -0.002 | 108      | 80  | 82.5 | 86             | +0.2  | -0.2  | 54             | 18.2           | -              | 58             | +0.2  | -0.2  |
| KGBA50-PP-AS  | 1880   | 50             | +0.013 | -0.002 | 130      | 100 | 98   | 108            | +0.2  | -0.2  | 65             | -              | 70             | 50             | +0.2  | -0.2  |
| KGBAS50-PP-AS | 1880   | 50             | +0.013 | -0.002 | 130      | 100 | 98   | 108            | +0.2  | -0.2  | 65             | -              | -              | 50             | +0.2  | -0.2  |
| KGBAO50-PP-AS | 1650   | 50             | +0.013 | -0.002 | 130      | 100 | 93   | 108            | +0.2  | -0.2  | 65             | 22.7           | -              | 50             | +0.2  | -0.2  |


<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



KGBAS..-PP-AS



KBAO..-PP-AS



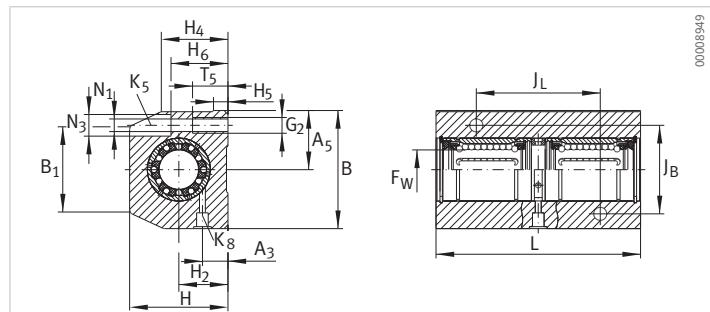
KBAO..-PP-AS

| L <sub>5</sub> | H <sub>2</sub> |        |        | A <sub>3</sub> | H <sub>6</sub><br>-0.05 | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | α  | SW |     | SW <sub>1</sub> |                | K <sub>8</sub> | n    | C    | C <sub>0</sub> |
|----------------|----------------|--------|--------|----------------|-------------------------|----------------|----------------|------------------------------|----|----|-----|-----------------|----------------|----------------|------|------|----------------|
|                | -              | U      | L      |                |                         |                |                |                              |    | -  | -   | -               | M <sub>A</sub> |                |      |      |                |
|                | mm             | mm     | mm     |                |                         |                |                |                              |    | mm | mm  | mm              | Nm             |                |      |      |                |
| 20             | 18             | +0.01  | -0.01  | 15             | 4.8                     | 4.7            | 8              | M4                           | -  | -  | -   | -               | -              | NIPA1          | 5    | 540  | 385            |
| -              | 18             | +0.01  | -0.01  | 15             | 4.8                     | 4.7            | 8              | M4                           | -  | 7  | -   | -               | -              | NIPA1          | 5    | 540  | 385            |
| -              | 18             | +0.01  | -0.01  | 7.8            | 4.8                     | 4.7            | 8              | M4                           | 78 | -  | 2   | 1               | NIPA1          | 4              | 600  | 445  |                |
| 22             | 22             | +0.01  | -0.01  | 15             | 5.4                     | 4.7            | 8              | M4                           | -  | -  | -   | -               | -              | NIPA1          | 5    | 710  | 530            |
| -              | 22             | +0.01  | -0.01  | 15             | 5.4                     | 4.7            | 8              | M4                           | -  | 7  | -   | -               | -              | NIPA1          | 5    | 710  | 530            |
| -              | 22             | +0.01  | -0.01  | 10             | 5.4                     | 4.7            | 8              | M4                           | 78 | -  | 2.5 | 1.5             | NIPA1          | 4              | 800  | 620  |                |
| 28             | 25             | +0.01  | -0.01  | 21             | 6.7                     | 4.7            | 8              | M4                           | -  | -  | -   | -               | -              | NIPA1          | 6    | 1570 | 1230           |
| -              | 25             | +0.01  | -0.01  | 21             | 6.7                     | 4.7            | 8              | M4                           | -  | 7  | -   | -               | -              | NIPA1          | 6    | 1570 | 1230           |
| -              | 25             | +0.01  | -0.01  | 11             | 6.7                     | 4.7            | 8              | M4                           | 60 | -  | 2.5 | 1.5             | NIPA1          | 5              | 1600 | 1280 |                |
| 40             | 30             | +0.01  | -0.01  | 23             | 7.8                     | 5.7            | 10             | M5                           | -  | -  | -   | -               | -              | NIPA1          | 6    | 2800 | 2220           |
| -              | 30             | +0.01  | -0.01  | 23             | 7.8                     | 5.7            | 10             | M5                           | -  | 8  | -   | -               | -              | NIPA1          | 6    | 2800 | 2220           |
| -              | 30             | +0.01  | -0.01  | 13             | 7.8                     | 5.7            | 10             | M5                           | 60 | -  | 3   | 3               | NIPA1          | 5              | 2850 | 2330 |                |
| 48             | 35             | +0.01  | -0.01  | 25             | 8.7                     | 6.8            | 11             | M6                           | -  | -  | -   | -               | -              | NIPA2          | 6    | 3600 | 2850           |
| -              | 35             | +0.01  | -0.01  | 25             | 8.7                     | 6.8            | 11             | M6                           | -  | 10 | -   | -               | -              | NIPA2          | 6    | 3600 | 2850           |
| -              | 35             | +0.01  | -0.01  | 14             | 8.7                     | 6.8            | 11             | M6                           | 54 | -  | 3   | 4               | NIPA2          | 5              | 3700 | 3000 |                |
| 56             | 45             | +0.01  | -0.01  | 30             | 11                      | 9.2            | 15             | M8                           | -  | -  | -   | -               | -              | NIPA2          | 6    | 6000 | 4400           |
| -              | 45             | +0.01  | -0.01  | 30             | 11                      | 9.2            | 15             | M8                           | -  | 13 | -   | -               | -              | NIPA2          | 6    | 6000 | 4400           |
| -              | 45             | +0.01  | -0.01  | 18             | 11                      | 9.2            | 15             | M8                           | 54 | -  | 4   | 5               | NIPA2          | 5              | 6100 | 4600 |                |
| 72             | 50             | +0.015 | -0.015 | 34             | 12.5                    | 9.2            | 15             | M8                           | -  | -  | -   | -               | -              | NIPA2          | 6    | 8700 | 6300           |
| -              | 50             | +0.015 | -0.015 | 34             | 12.5                    | 9.2            | 15             | M8                           | -  | 13 | -   | -               | -              | NIPA2          | 6    | 8700 | 6300           |
| -              | 50             | +0.015 | -0.015 | 19             | 12.5                    | 9.2            | 15             | M8                           | 54 | -  | 4   | 7               | NIPA2          | 5              | 8900 | 6600 |                |

## 4.2.5 Linear ball bearing units

KTB

Tandem arrangement


closed

Sealed

Greased

Can be relubricated

4



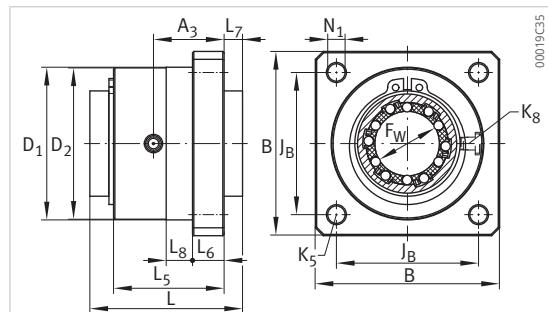
| Designation   | m    | Fw |        |        | B   | L   | H   | J <sub>B</sub> | A <sub>5</sub> | B <sub>1</sub> | J <sub>L</sub> <sup>1)</sup> | H <sub>2</sub> |
|---------------|------|----|--------|--------|-----|-----|-----|----------------|----------------|----------------|------------------------------|----------------|
|               |      | -  | U      | L      |     |     |     | ±0.15          |                |                | ±0.015                       | ±0.015         |
| -             | g    | mm | mm     | mm     | mm  | mm  | mm  | mm             | mm             | mm             | mm                           | mm             |
| KTB12-B-PP-AS | 310  | 12 | +0.008 | 0      | 43  | 76  | 35  | 30             | 21.5           | 34             | 40                           | 18             |
| KTB16-B-PP-AS | 460  | 16 | +0.009 | -0.001 | 53  | 84  | 42  | 36             | 26.5           | 40             | 45                           | 22             |
| KTB20-B-PP-AS | 800  | 20 | +0.009 | -0.001 | 60  | 104 | 50  | 45             | 30             | 44             | 55                           | 25             |
| KTB25-B-PP-AS | 1490 | 25 | +0.011 | -0.001 | 78  | 130 | 60  | 54             | 39             | 60             | 70                           | 30             |
| KTB30-B-PP-AS | 2300 | 30 | +0.011 | -0.001 | 87  | 152 | 70  | 62             | 43.5           | 63             | 85                           | 35             |
| KTB40-B-PP-AS | 3700 | 40 | +0.013 | -0.002 | 108 | 176 | 90  | 80             | 54             | 76             | 100                          | 45             |
| KTB50-B-PP-AS | 6600 | 50 | +0.013 | -0.002 | 132 | 224 | 105 | 100            | 66             | 90             | 125                          | 50             |

<sup>1)</sup> Hole position symmetrical to bearing length L.

| H <sub>4</sub> | A <sub>3</sub> | H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | N <sub>1</sub> | N <sub>3</sub> | G <sub>2</sub> | K <sub>8</sub> | K <sub>5</sub> | C     | C <sub>0</sub> |
|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-------|----------------|
|                |                |                |                |                |                |                |                |                |                | -     | -              |
| mm             | -              | -              | -              |       |                |
| 25.5           | 10             | 5.4            | 13             | 28             | 5.3            | 10             | M6             | NIPA1          | M5             | 880   | 770            |
| 20             | 12             | 6.9            | 13             | 35             | 5.3            | 10             | M6             | NIPA1          | M5             | 1150  | 1060           |
| 33             | 13             | 7.4            | 18             | 37             | 6.4            | 11             | M8             | NIPA2          | M6             | 2550  | 2450           |
| 40             | 15             | 8.3            | 22             | 49             | 8.4            | 15             | M10            | NIPA2          | M8             | 4550  | 4450           |
| 44.5           | 16             | 9.3            | 26             | 52             | 10.5           | 18             | M12            | NIPA2          | M10            | 5900  | 5700           |
| 56             | 20             | 12.4           | 34             | 64             | 13             | 20             | M16            | NIPA2          | M12            | 8800  | 9700           |
| 60             | 20             | 11.1           | 34             | 70             | 13             | 20             | M16            | NIPA2          | M12            | 12600 | 14100          |

## 4.2.6 Linear ball bearing units

KFB


With flange

Sealed

Greased

Can be relubricated

4



| Designation   | m<br>- | Fw |        |        | B   | L   | L5 | L6 | L7   | A3   |
|---------------|--------|----|--------|--------|-----|-----|----|----|------|------|
|               |        | -  | U      | L      |     |     |    |    |      |      |
| -             | g      | mm | mm     | mm     | mm  | mm  | mm | mm | mm   | mm   |
| KFB12-B-PP-AS | 80     | 12 | +0.008 | 0      | 40  | 32  | 22 | 6  | 4.2  | 11.5 |
| KFB16-B-PP-AS | 120    | 16 | +0.009 | -0.001 | 50  | 36  | 24 | 8  | 5.2  | 12.5 |
| KFB20-B-PP-AS | 220    | 20 | +0.009 | -0.001 | 60  | 45  | 30 | 10 | 6.7  | 15.8 |
| KFB25-B-PP-AS | 430    | 25 | +0.011 | -0.001 | 70  | 58  | 42 | 12 | 7    | 22   |
| KFB30-B-PP-AS | 640    | 30 | +0.011 | -0.001 | 80  | 68  | 50 | 14 | 8    | 26   |
| KFB40-B-PP-AS | 1280   | 40 | +0.013 | -0.002 | 100 | 80  | 59 | 16 | 9.2  | 30.3 |
| KFB50-B-PP-AS | 2160   | 50 | +0.013 | -0.002 | 130 | 100 | 75 | 18 | 11.2 | 38.8 |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

| N <sub>1</sub> | K <sub>5</sub> <sup>1)</sup> | D <sub>1</sub> | D <sub>2</sub> | J <sub>B</sub> | L <sub>8</sub> | K <sub>8</sub> | n | C    | C <sub>0</sub> |
|----------------|------------------------------|----------------|----------------|----------------|----------------|----------------|---|------|----------------|
|                |                              | +0.2           | g7             |                |                |                |   |      |                |
| mm             | -                            | mm             | mm             | mm             | mm             | -              | - | N    | N              |
| 5.5            | M5                           | 31.5           | 32             | 30             | 10             | NIPD3          | 5 | 540  | 385            |
| 5.5            | M5                           | 37.5           | 38             | 35             | 10             | NIPD3          | 5 | 710  | 530            |
| 6.6            | M6                           | 45.5           | 46             | 42             | 10             | NIPD3          | 6 | 1570 | 1230           |
| 6.6            | M6                           | 57.5           | 58             | 54             | 10             | NIPA1          | 6 | 2800 | 2200           |
| 9              | M8                           | 65.5           | 66             | 60             | 10             | NIPA1          | 6 | 3600 | 2850           |
| 11             | M10                          | 89.5           | 90             | 78             | 10             | NIPA1          | 6 | 6000 | 4400           |
| 11             | M10                          | 97.5           | 98             | 98             | 10             | NIPA2          | 6 | 8700 | 6300           |

## 5 Linear plain bearings and linear plain bearing units of the plain bearing series

### 5.1 Product design

Linear plain bearings PAB and PABO and the associated plain bearing units PAGBA and PAGBAO are very heavy duty, extremely robust and are particularly quiet. Their emergency running properties are excellent.

Linear plain bearings PAB and PABO consist of an outer ring made of high-strength aluminum, into which plain bearing bushes EGB..-E50 are glued.

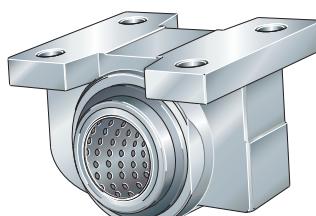
The series PAB is closed and designed for use with shafts. PABO has a segment cut-out and is used in conjunction with support rails.



Plain bushes must not be used in conjunction with the special Corrotect coating. This can lead to crevice corrosion, which impairs the function of the bearing.

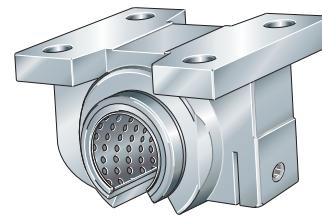
56 Linear plain bearings PAB..-PP-AS, closed, sealed




0000A516

57 Linear plain bearings PABO..-PP-AS, with segment cut-out, sealed




0000A7F1

58 Linear plain bearing units PAGBA..-PP-AS, closed



0000A4D9

59 Linear plain bearing units PAGBAO..-PP-AS, with segment cut-out



0000A4E3

5

15 Linear plain bearings and linear plain bearing units of the plain bearing series

| Model series   |  | Characteristic                                                                                                                            |
|----------------|--|-------------------------------------------------------------------------------------------------------------------------------------------|
| PAB..-PP-AS    |  | <ul style="list-style-type: none"> <li>• Closed</li> <li>• Lip seal on both sides</li> <li>• Can be relubricated</li> </ul>               |
| PABO..-PP-AS   |  | <ul style="list-style-type: none"> <li>• With segment cut-out</li> <li>• Lip seal on both sides</li> <li>• Can be relubricated</li> </ul> |
| PAGBA..-PP-AS  |  | <ul style="list-style-type: none"> <li>• Closed</li> <li>• Can be relubricated</li> </ul>                                                 |
| PAGBAO..-PP-AS |  | <ul style="list-style-type: none"> <li>• With segment cut-out</li> <li>• Housing slotted</li> <li>• Can be relubricated</li> </ul>        |

Further information

- Product tables
- Shafts ►82|6.1
- Support rails ►101|7.1
- Shaft support blocks ►117|8.1

## 5.2 Product tables

### 5.2.1 Explanations

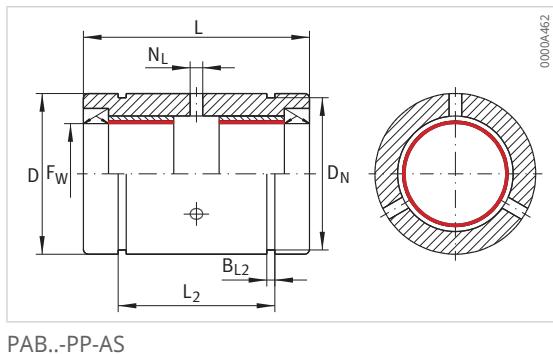
|          |    |                                   |
|----------|----|-----------------------------------|
| $A_3$    | mm | Lubrication connection distance   |
| $A_5$    | mm | Stop side distance                |
| $B$      | mm | Width of the housing              |
| $B_2$    | mm | Segment opening                   |
| $B_{L2}$ | mm | Width of mounting groove          |
| $C_0$    | N  | Basic static load rating          |
| $D$      | mm | Outside diameter                  |
| $D_N$    | mm | Diameter of mounting groove       |
| $F_w$    | mm | Inner envelope diameter           |
| $H$      | mm | Height of the housing             |
| $H_2$    | mm | Center distance                   |
| $H_6$    | mm | Depth of mounting hole            |
| $J_B$    | mm | Mounting hole distance            |
| $J_L$    | mm | Distance between mounting holes   |
| $K_5$    | -  | Fixing screw                      |
| $K_8$    | -  | Lubrication connection            |
| $L$      | mm | Length of the housing             |
| $L$      | mm | Length of the linear ball bearing |
| $L$      | mm | Lower limit deviation             |
| $L_2$    | mm | Connection dimension              |
| $L_4$    | mm | Length of the housing section     |
| $L_5$    | mm | Housing width                     |
| $m$      | g  | Mass                              |
| $N_1$    | mm | Diameter of the mounting hole     |
| $N_3$    | mm | Diameter of the counterbore       |
| $N_4$    | mm | Diameter of the fixing hole       |
| $N_L$    | mm | Diameter of the lubrication hole  |
| $U$      | mm | Upper limit deviation             |
| $\alpha$ | °  | Segment cut-out angle             |



## 5.2.2 Linear plain bearings

PAB, PABO

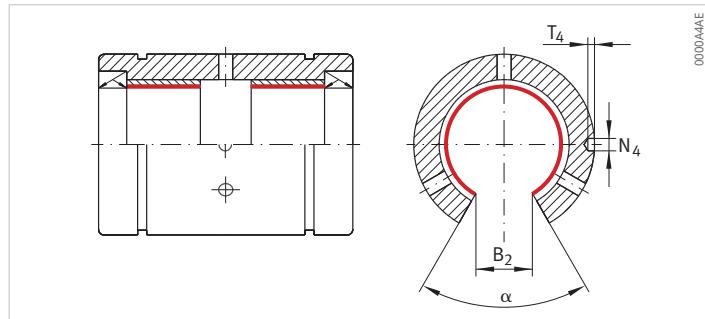
closed


With segment cut-out

Sealed

Greased

Can be relubricated


5



| Designation  | m   | F <sub>w</sub> | D  | L   | L <sub>2</sub> <sup>1)</sup> | B <sub>L2</sub> <sup>2)</sup> |
|--------------|-----|----------------|----|-----|------------------------------|-------------------------------|
| -            | g   | mm             | mm | mm  | mm                           | mm                            |
| PAB12-PP-AS  | 26  | 12             | 22 | 32  | 22.6                         | 1.3                           |
| PABO12-PP-AS | 21  | 12             | 22 | 32  | 22.6                         | 1.3                           |
| PAB16-PP-AS  | 34  | 16             | 26 | 36  | 24.6                         | 1.3                           |
| PABO16-PP-AS | 28  | 16             | 26 | 36  | 24.6                         | 1.3                           |
| PAB20-PP-AS  | 68  | 20             | 32 | 45  | 31.2                         | 1.6                           |
| PABO20-PP-AS | 58  | 20             | 32 | 45  | 31.2                         | 1.6                           |
| PAB25-PP-AS  | 132 | 25             | 40 | 58  | 43.7                         | 1.85                          |
| PABO25-PP-AS | 113 | 25             | 40 | 58  | 43.7                         | 1.85                          |
| PAB30-PP-AS  | 169 | 30             | 47 | 68  | 51.7                         | 1.85                          |
| PABO30-PP-AS | 143 | 30             | 47 | 68  | 51.7                         | 1.85                          |
| PAB40-PP-AS  | 426 | 40             | 62 | 80  | 60.3                         | 2.15                          |
| PABO40-PP-AS | 362 | 40             | 62 | 80  | 60.3                         | 2.15                          |
| PAB50-PP-AS  | 773 | 50             | 75 | 100 | 77.3                         | 2.65                          |
| PABO50-PP-AS | 657 | 50             | 75 | 100 | 77.3                         | 2.65                          |

<sup>1)</sup> Hole position symmetrical to bearing length L.<sup>2)</sup> Groove dimensions suitable for snap rings according to DIN 471.

3) The static load ratings are not valid when the above bearings are installed in housings, as shown on the following pages.



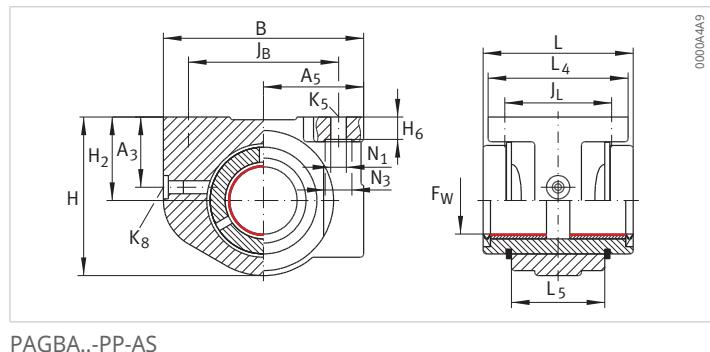
PABO..-PP-AS

| D <sub>N</sub><br>mm | B <sub>2</sub><br>mm | T <sub>4</sub><br>mm | N <sub>4</sub><br>mm | N <sub>L</sub><br>H13<br>mm | α<br>° | C <sub>0</sub> <sup>3)</sup> |  |
|----------------------|----------------------|----------------------|----------------------|-----------------------------|--------|------------------------------|--|
|                      |                      |                      |                      |                             |        | N                            |  |
| 21                   | -                    | -                    | -                    | 2.5                         | -      | 60000                        |  |
| 21                   | 7.6                  | 1.2                  | 2.2                  | 2.5                         | 78     | 60000                        |  |
| 24.9                 | -                    | -                    | -                    | 2.5                         | -      | 96000                        |  |
| 24.9                 | 10.1                 | 1.2                  | 2.2                  | 2.5                         | 78     | 96000                        |  |
| 30.3                 | -                    | -                    | -                    | 2.5                         | -      | 150000                       |  |
| 30.3                 | 10                   | 1.2                  | 2.2                  | 2.5                         | 60     | 150000                       |  |
| 37.5                 | -                    | -                    | -                    | 2.5                         | -      | 250000                       |  |
| 37.5                 | 12.5                 | 1.5                  | 3                    | 2.5                         | 60     | 250000                       |  |
| 44.5                 | -                    | -                    | -                    | 3                           | -      | 375000                       |  |
| 44.5                 | 13.6                 | 1.5                  | 3                    | 3                           | 54     | 375000                       |  |
| 59                   | -                    | -                    | -                    | 3                           | -      | 600000                       |  |
| 59                   | 18.2                 | 1.5                  | 3                    | 3                           | 54     | 600000                       |  |
| 72                   | -                    | -                    | -                    | 4                           | -      | 1000000                      |  |
| 72                   | 22.7                 | 1.5                  | 3                    | 4                           | 54     | 1000000                      |  |

## 5.2.3 Linear plain bearing

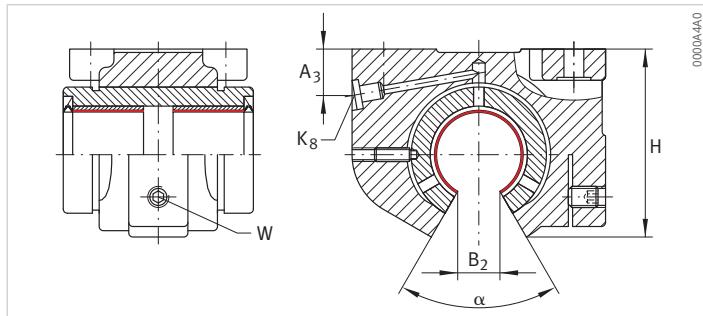
## units PAGBA, PAGBAO

closed


With segment cut-out

Sealed

Greased


Can be relubricated

5



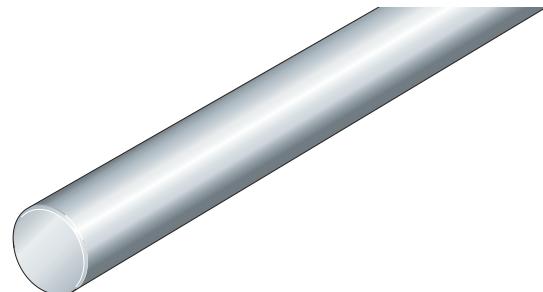
| Designation    | m<br>g | F_W<br>mm | B<br>mm | L<br>h12<br>mm | H<br>mm | J_B |       |       | A_5 |        |        | B_2<br>mm | L_4<br>mm |
|----------------|--------|-----------|---------|----------------|---------|-----|-------|-------|-----|--------|--------|-----------|-----------|
|                |        |           |         |                |         | -   | U     | L     | -   | U      | L      |           |           |
| PAGBA12-PP-AS  | 70     | 12        | 42      | 32             | 34      | 32  | +0.15 | -0.15 | 21  | +0.01  | -0.01  | -         | 32        |
| PAGBAO12-PP-AS | 60     | 12        | 42      | 32             | 30.5    | 32  | +0.15 | -0.15 | 21  | +0.01  | -0.01  | 7.6       | 32        |
| PAGBA16-PP-AS  | 110    | 16        | 50      | 36             | 41      | 40  | +0.15 | -0.15 | 25  | +0.01  | -0.01  | -         | 35        |
| PAGBAO16-PP-AS | 90     | 16        | 50      | 36             | 36.8    | 40  | +0.15 | -0.15 | 25  | +0.01  | -0.01  | 10.1      | 35        |
| PAGBA20-PP-AS  | 180    | 20        | 60      | 45             | 47.5    | 45  | +0.15 | -0.15 | 30  | +0.01  | -0.01  | -         | 42        |
| PAGBAO20-PP-AS | 160    | 20        | 60      | 45             | 44.5    | 45  | +0.15 | -0.15 | 30  | +0.01  | -0.01  | 10        | 42        |
| PAGBA25-PP-AS  | 350    | 25        | 74      | 58             | 60      | 60  | +0.2  | -0.2  | 37  | +0.01  | -0.01  | -         | 54        |
| PAGBAO25-PP-AS | 310    | 25        | 74      | 58             | 56      | 60  | +0.2  | -0.2  | 37  | +0.01  | -0.01  | 12.5      | 54        |
| PAGBA30-PP-AS  | 480    | 30        | 84      | 68             | 67      | 68  | +0.2  | -0.2  | 42  | +0.01  | -0.01  | -         | 60        |
| PAGBAO30-PP-AS | 430    | 30        | 84      | 68             | 63.5    | 68  | +0.2  | -0.2  | 42  | +0.01  | -0.01  | 13.6      | 60        |
| PAGBA40-PP-AS  | 1070   | 40        | 108     | 80             | 87      | 86  | +0.2  | -0.2  | 54  | +0.015 | -0.015 | -         | 78        |
| PAGBAO40-PP-AS | 910    | 40        | 108     | 80             | 82.4    | 86  | +0.2  | -0.2  | 54  | +0.015 | -0.015 | 18.2      | 78        |
| PAGBA50-PP-AS  | 1650   | 50        | 130     | 100            | 98      | 108 | +0.2  | -0.2  | 65  | +0.015 | -0.015 | -         | 70        |
| PAGBAO50-PP-AS | 1460   | 50        | 130     | 100            | 92.8    | 108 | +0.2  | -0.2  | 65  | +0.015 | -0.015 | 22.7      | 70        |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.



PAGBAO..-PP-AS

| J <sub>L</sub> |       |       | L <sub>5</sub> | H <sub>2</sub> |        |        | A <sub>3</sub> | H <sub>6</sub> | N <sub>1</sub> <sup>1)</sup> | N <sub>3</sub> <sup>1)</sup> | K <sub>5</sub> | SW  |                | α  | K <sub>8</sub> |       |
|----------------|-------|-------|----------------|----------------|--------|--------|----------------|----------------|------------------------------|------------------------------|----------------|-----|----------------|----|----------------|-------|
| mm             | U     | L     |                | -              | U      | L      |                |                |                              |                              |                | -   | M <sub>A</sub> | Nm | °              | -     |
| mm             | mm    | mm    | mm             | mm             | mm     | mm     | mm             | mm             | mm                           | mm                           | -              | -   | Nm             | °  | -              |       |
| 23             | +0.15 | -0.15 | 20             | 18             | +0.01  | -0.01  | 15             | 4.8            | 4.7                          | 8                            | M4             | -   | -              | -  | -              | NIPA1 |
| 23             | +0.15 | -0.15 | 20             | 18             | +0.01  | -0.01  | 7.8            | 4.8            | 4.7                          | 8                            | M4             | 2   | 1              | 78 | -              | NIPA1 |
| 26             | +0.15 | -0.15 | 22             | 22             | +0.01  | -0.01  | 15             | 5.4            | 4.7                          | 8                            | M4             | -   | -              | -  | -              | NIPA1 |
| 26             | +0.15 | -0.15 | 22             | 22             | +0.01  | -0.01  | 10             | 5.4            | 4.7                          | 8                            | M4             | 2.5 | 1.5            | 78 | -              | NIPA1 |
| 32             | +0.15 | -0.15 | 28             | 25             | +0.01  | -0.01  | 21             | 6.7            | 4.7                          | 8                            | M4             | -   | -              | -  | -              | NIPA1 |
| 32             | +0.15 | -0.15 | 28             | 25             | +0.01  | -0.01  | 11             | 6.7            | 4.7                          | 8                            | M4             | 2.5 | 1.5            | 60 | -              | NIPA1 |
| 40             | +0.2  | -0.2  | 40             | 30             | +0.01  | -0.01  | 23             | 7.8            | 5.7                          | 10                           | M5             | -   | -              | -  | -              | NIPA1 |
| 40             | +0.2  | -0.2  | 40             | 30             | +0.01  | -0.01  | 13             | 7.8            | 5.7                          | 10                           | M5             | 3   | 3              | 60 | -              | NIPA1 |
| 45             | +0.2  | -0.2  | 48             | 35             | +0.01  | -0.01  | 25             | 8.7            | 6.8                          | 11                           | M6             | -   | -              | -  | -              | NIPA2 |
| 45             | +0.2  | -0.2  | 48             | 35             | +0.01  | -0.01  | 14             | 8.7            | 6.8                          | 11                           | M6             | 3   | 4              | 54 | -              | NIPA2 |
| 58             | +0.2  | -0.2  | 56             | 45             | +0.01  | -0.01  | 30             | 11             | 9.2                          | 15                           | M8             | -   | -              | -  | -              | NIPA2 |
| 58             | +0.2  | -0.2  | 56             | 45             | +0.01  | -0.01  | 18             | 11             | 9.2                          | 15                           | M8             | 4   | 5              | 54 | -              | NIPA2 |
| 50             | +0.2  | -0.2  | 72             | 50             | +0.015 | -0.015 | 34             | 12.5           | 9.2                          | 15                           | M8             | -   | -              | -  | -              | NIPA2 |
| 50             | +0.2  | -0.2  | 72             | 50             | +0.015 | -0.015 | 19             | 12.5           | 9.2                          | 15                           | M8             | 4   | 7              | 54 | -              | NIPA2 |


## 6 Solid shafts and hollow shafts

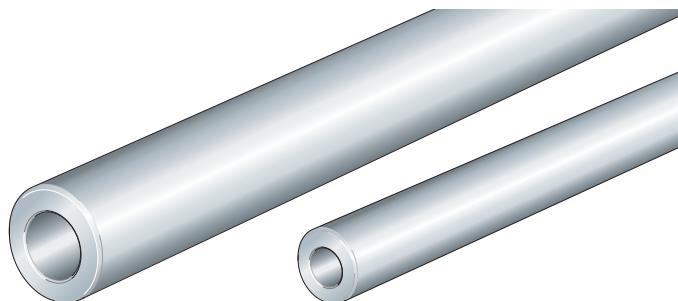
### 6.1 Product design

Solid shafts and hollow shafts are precision shafts made of tempered steel in rolling bearing quality and are supplied in metric dimensions.

Hollow shafts are particularly suitable for weight-reduced constructions. Solid shafts can be fitted with radial and axial threaded holes for mounting or, on request, can be manufactured completely according to customer drawings ►86 | 6.1.5 to ►91 | 77.

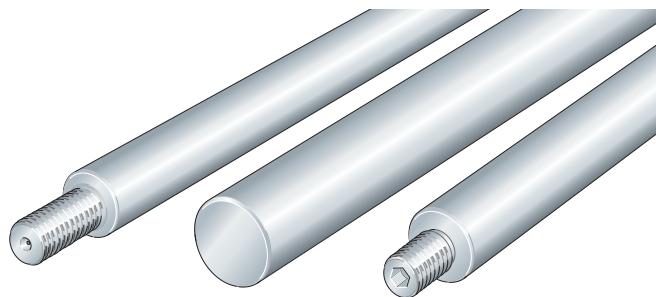
60 Solid shafts without threaded holes




00008C1C

61 Solid shafts with axial and radial threaded holes




00008CE0

62 Hollow shafts



00006771

⊕ 63 Shafts according to customer requirements



00006767

6

### 6.1.1 Precision raceway for economical linear guides

The material quality of the shafts ensures high dimensional accuracy and form accuracy (roundness, parallelism). Due to the high surface hardness and surface quality, the shafts are therefore very well suited as a precision raceway for linear ball bearings.

Precision shafts are suitable for a wide range of applications:

- Guide rods for jig and fixture construction, and automatic machine construction
- Counter-running surfaces for plain bushings
- Stretch and straightening rollers
- Precision raceway for precision ball bearings

When used in conjunction with linear ball bearings, support rollers and cam rollers, track rollers and profile rollers, this results in durable, rigid, accurate, ready-to-install and economical linear guides with a long rating life.

### 6.1.2 Steels, hardness, surface, tolerances, lengths

Shafts made of Cf53 (material number 1.1213) are inductively hardened and ground; the hardness of the surface is 670 HV + 165 HV (59 HRC + 6 HRC).

Hollow shafts are available only in tempered steel.

As an alternative to tempered steel, solid shafts are also available in corrosion-resistant steels to ISO 683-17 and EN 10880, for example as X46Cr13 (1.4034) or X90CrMoV18 (1.4112). The hardness of the surface at X46 is 520 HV + 115 HV (52 HRC + 4 HRC). The hardness of the surface at X90 is 580 HV + 85 HV (54 HRC + 4 HRC). The suffix is X46 or X90.

These steels are particularly suitable for use in the food industry, medical technology and semiconductor technology.



Due to the hardness profile, the corrosion resistance of shafts made from materials X46Cr13 and X90CrMoV18 is limited at the front sides. This also applies to any soft-annealed areas.

An even hardening depth ensures a steady transition from the hardened edge layer to the tough, normalized core, which can absorb bending stresses.

The standard surface is Ra 0.3.

Solid shafts have the normal tolerance h6; hollow shafts have h7.

Precision shafts are available in single-piece lengths of up to 6000 mm. Longer shafts are available on request and assembled (with mortice and tenon joints).

### 6.1.3 Coatings

Coatings and hard chromium coating provide optimum wear protection and corrosion protection for the shafts and are available as an option.

The hard chromium coating is suitable for applications in which high wear protection is required. The chromium coating also offers good corrosion resistance.

Chromium-coated shafts have the tolerance h7. The thickness of the chromium coating is 5 µm to 15 µm, with the hardness 800 HV to 1050 HV. The suffix is CR.

Corrosion-resistant shafts are coated with the special Corrotect coating and, for production reasons, have centering or threaded holes in the end faces.

The inside diameter of hollow shafts is not coated.

Corrotect is a surface coating applied by electroplating. The coating gives cathodic corrosion protection and is extremely thin. Under load, it is compacted into the surface roughness profile and partially worn away. In parts coated with Corrotect, running-in occurs in the area of the seal and an optically bright area develops as a result. The remote cathodic protection mechanism can also prevent the formation of rust in this area. Corrotect-coated parts have the suffix RROC.



Corrotect reduces the adhesion of weld spatter. Corrotect can be worn away by contact seals. The Corrotect coating is not approved for direct contact with food and is not suitable in abrasive ambient media.

For use in the food industry Schaeffler Group offers the special coating Corrotect Cr(VI)-free. This meets the requirements of the RoHS Directive EU-Richtlinie 2002/95/EG. All other benefits are identical to the standard Corrotect coating. The suffix is RROC.

- Resistance to moisture, salt spray, dirty water, and weakly alkaline and weakly acidic media
- Does not impair the load carrying capacity, in contrast to the use of corrosion-resistant steels
- Extremely resistant to corrosion
- Protection against rust on all surfaces
- Protection against rust on smaller bright spots due to the cathodic protection effect
- Protection against EP additives
- Good thermal conductivity
- Compliant with RoHS Directive 2011/95/EU

Components coated with Corrotect are particularly suitable when corrosion resistance is paramount. The coating can also be used to prevent weld spatter from adhering.

### 16 Coatings

| Characteristic       | Coating      |                               | Hard chromium                                          |
|----------------------|--------------|-------------------------------|--------------------------------------------------------|
|                      | Corroprotect | CR(VI)-free                   |                                                        |
| Suffix               | -            | RROC                          | CR                                                     |
| Color                | -            | Colorless, blue to iridescent | Chromium                                               |
| Coating thickness    | µm           | 0.5 ... 5.0                   | 5.0 ... 15.0                                           |
| Formulation          |              | Zinc alloyed with iron        | Chromium                                               |
| Coating hardness     | HV           | 300                           | 800 ... 1050                                           |
| Corrosion protection | h            | 96                            | 2)                                                     |
| Anti-wear protection | -            | no                            | Yes                                                    |
| Maximum shaft length | mm           | 3500                          | 3900<br>(at Ø 6 mm ... 8 mm)<br>5900<br>(at Ø ≥ 10 mm) |
| Cr(VI)-free          | -            | Yes                           | Yes                                                    |

1) Salt spray test to DIN EN ISO 9227

2) Please consult with Application Technology



Machined surfaces, front sides and bore holes can be uncoated.

### 6.1.4 Available materials, coatings, tolerances

#### 17 Available materials, coatings, tolerances

| Shaft diameter | Solid shafts            |    |           |         |            | Hollow shafts      |  |  |  |
|----------------|-------------------------|----|-----------|---------|------------|--------------------|--|--|--|
|                | Material                |    |           | X46Cr13 | X90CrMoV18 | Heat-treated steel |  |  |  |
|                | Heat-treated steel      |    |           |         |            |                    |  |  |  |
|                | Tolerance <sup>1)</sup> | CR | RRF, RROC |         |            |                    |  |  |  |
| mm             | h6 <sup>2)</sup>        | h7 | h6        | h6      | h6         | h7                 |  |  |  |
| 4              | ● <sup>2)</sup>         | -  | ■         | -       | ●          | -                  |  |  |  |
| 5              | ●                       | -  | ■         | -       | -          | -                  |  |  |  |
| 6              | ●                       | ●  | ■         | ●       | ●          | -                  |  |  |  |
| 8              | ●                       | ●  | ■         | ●       | ●          | -                  |  |  |  |
| 10             | ●                       | ●  | ■         | ●       | ●          | -                  |  |  |  |
| 12             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 14             | ●                       | ●  | ■         | ●       | ●          | -                  |  |  |  |
| 15             | ●                       | ●  | ■         | ●       | ●          | -                  |  |  |  |
| 16             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 20             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 25             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 30             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 40             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 50             | ●                       | ●  | ■         | ●       | ●          | ●                  |  |  |  |
| 60             | ●                       | ●  | ■         | -       | -          | ●                  |  |  |  |
| 80             | ●                       | ●  | ■         | -       | -          | ●                  |  |  |  |

1) Other tolerances on request.

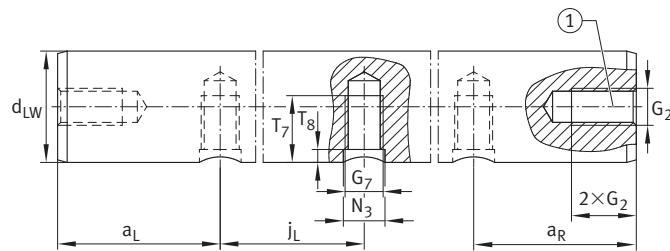
2) ■ On request.

● Available design.

### 6.1.5 Solid shafts with threaded holes

If shafts are to be supported or connected to other elements, mounting holes are required.

Hole patterns B01 to B05 are available to provide standard threaded holes for solid shafts ►86|█18.


In addition, holes with or without thread are possible according to customer drawings ►88|⊕65 to ►91|⊕77.

█18 Codes for hole patterns

| Code |                                                                                    | Execution of the holes                       |
|------|------------------------------------------------------------------------------------|----------------------------------------------|
| B01  |   | Axial thread on one side                     |
| B02  |   | Axial thread on both sides                   |
| B03  |   | Radial thread                                |
| B04  |   | Radial thread and axial thread on one side   |
| B05  |  | Radial thread and axial thread on both sides |

Depending on the hole diameter, the outside shaft diameter in the axial bore area may increase, which may cause deviations in the tolerances to occur in this area.

## 64 Axial and radial threaded holes



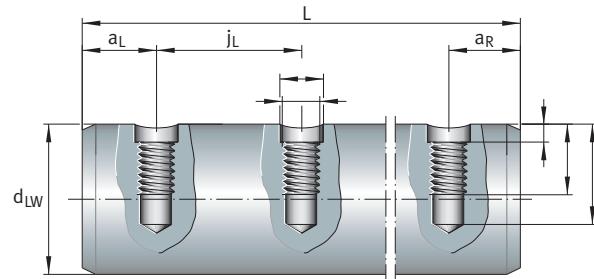
00019FE2

1 Depending on the hole diameter

6

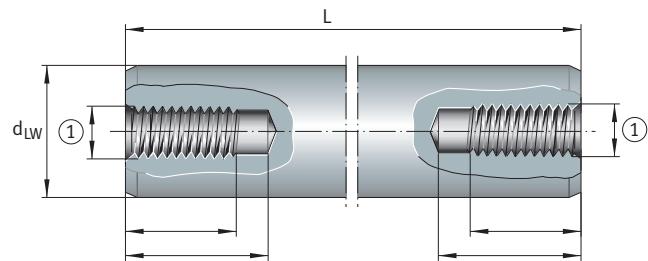
## 19 Recommended threaded holes for solid shafts W

| Designation | $d_{LW}$ | $G_2$         | $G_7$ | $j_L$ | $a_L$<br>min. | $a_R$<br>min. | $T_7$           | $T_8$           | $N_3$     |
|-------------|----------|---------------|-------|-------|---------------|---------------|-----------------|-----------------|-----------|
| -           | mm       | -             | -     | mm    | mm            | mm            | mm              | mm              | mm        |
| W08         | 8        | M3            | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |
| W10         | 10       | M3, M4        | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |
| W12         | 12       | M4, M5        | M4    | 75    | -             | 120           | 10              | 3 · $G_2 + G_7$ | 7 2 5     |
| W14         | 14       | M4, M5, M6    | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |
| W15         | 15       | M5, M6, M8    | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |
| W16         | 16       | M5, M6, M8    | M5    | 75    | 100           | 150           | 15              | 3 · $G_2 + G_7$ | 9 2.5 6   |
| W20         | 20       | -             | M5    | -     | -             | 150           | 15              | 3 · $G_2 + G_7$ | 9 2.5 6   |
| W20         | 20       | M6, M8, M10   | M6    | 75    | 100           | 150           | 15              | 3 · $G_2 + G_7$ | 11 3 7    |
| W25         | 25       | -             | M6    | -     | -             | 150           | 15              | 3 · $G_2 + G_7$ | 11 3 7    |
| W25         | 25       | M8, M10, M12  | M8    | -     | 120           | 200           | 15              | 3 · $G_2 + G_7$ | 15 3 9    |
| W30         | 30       | -             | M6    | -     | -             | 150           | 15              | 3 · $G_2 + G_7$ | 11 3 7    |
| W30         | 30       | M10, M12, M16 | M10   | 100   | 150           | 200           | 20              | 3 · $G_2 + G_7$ | 17 3.5 11 |
| W40         | 40       | M10, M12, M16 | M10   | 150   | 200           | 300           | 20              | 3 · $G_2 + G_7$ | 19 4 11   |
| W40         | 40       | M10, M12, M16 | M12   | 100   | -             | -             | 20              | 3 · $G_2 + G_7$ | 21 4 13   |
| W40         | 40       | -             | M10   | -     | -             | 150           | 20              | 3 · $G_2 + G_7$ | 19 4 11   |
| W50         | 50       | M12, M16, M20 | M12   | -     | 200           | 300           | 20              | 3 · $G_2 + G_7$ | 21 4 13   |
| W50         | 50       | M12, M16, M20 | M14   | 100   | -             | -             | 20              | 3 · $G_2 + G_7$ | 25 4 15   |
| W60         | 60       | M16, M20, M24 | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |
| W60         | 60       | M16, M20, M24 | -     | -     | -             | -             | 3 · $G_2 + G_7$ | -               | -         |


|          |    |                                  |
|----------|----|----------------------------------|
| $a_L$    | mm | Radial hole, edge distance left  |
| $a_R$    | mm | Radial hole, edge distance right |
| $d_{LW}$ | mm | Shaft diameter                   |
| $j_L$    | mm | Distance between holes           |
| $L$      | mm | Length                           |
| $N_3$    | mm | Countersink diameter             |
| $T_7$    | mm | Thread length                    |
| $T_8$    | mm | Bore depth                       |
| $W$      | mm | Width across flats               |

### 6.1.6 Shafts according to customer requirements

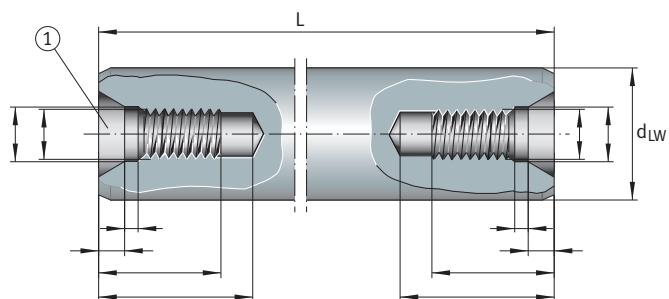
To request special shafts, please supply your own drawing or copy our templates and complete the required values.


6

65 Radial holes with and without thread



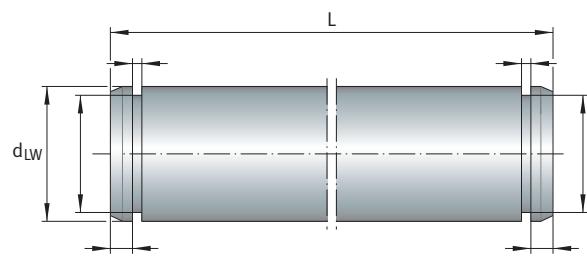
00008DA2


66 Internal thread, one-sided or two-sided



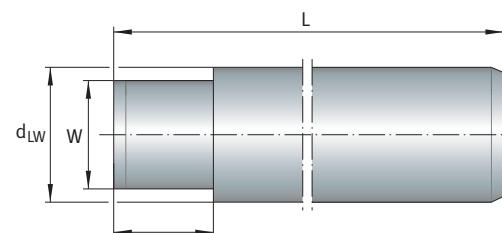
00008DA3

1 Diameter according to DIN 336 or DIN 13


67 Internal thread with centering hole

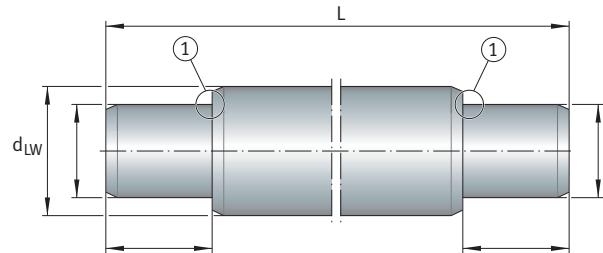


00008DA6


1 Recommended for threads with centering hole DIN 332-D

④ 68 Groove for snap ring

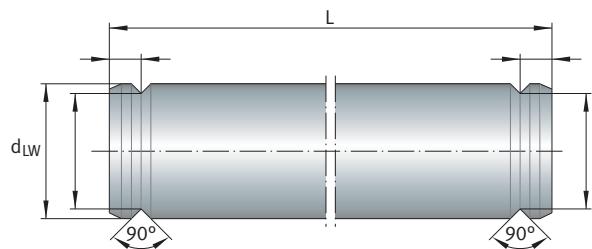



00008DAB

④ 69 Width across flats W

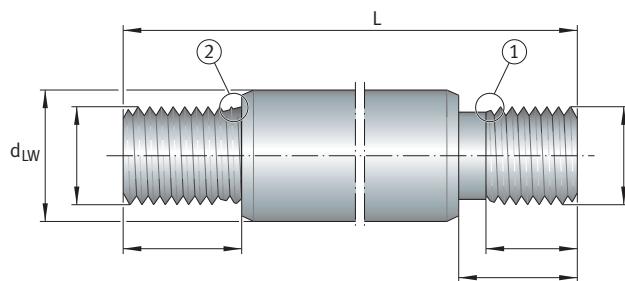


00008DAE


④ 70 Pin



00008DB0

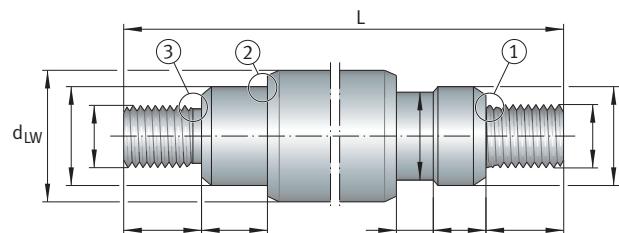

1 Undercut type F DIN 509:2022 (both sides)

## □71 90-groove



00008DB6

## □72 Threaded pin



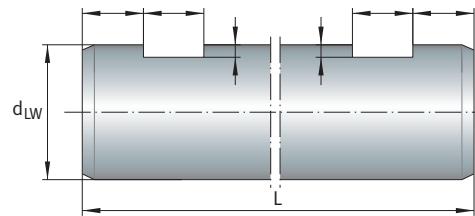

00008DB7

1 Thread run-out according to DIN 76-1A; in case of undercut, to DIN 76-A

2 DIN 76-A recommended for undercut

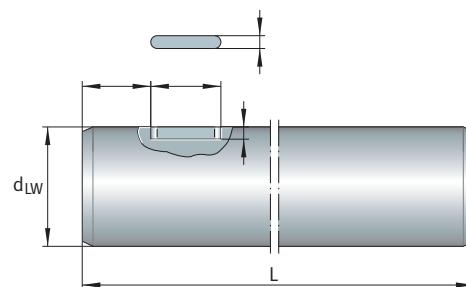
## □73 Pin and threaded pin




00008DBB

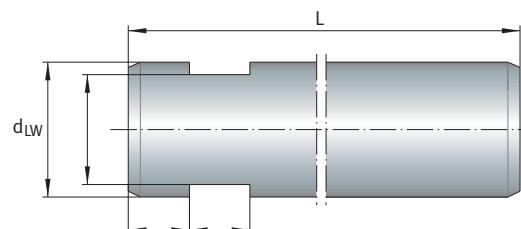
1 DIN 76-A recommended for undercut

2 DIN 509:2022 Recommended for undercut type F


3 Thread run-out according to DIN 76-1A

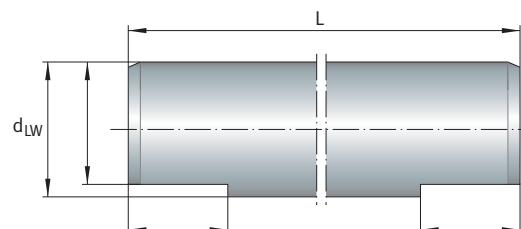
□ 74 Slot




00008DC4

□ 75 Keyway




00008DC6

□ 76 Width across flats



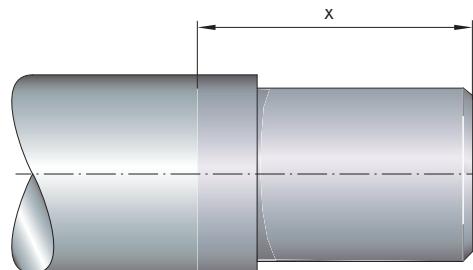
00008DC9

□ 77 Area



00008DCC

### 6.1.7 Shaft machining, shaft specification


#### 6.1.7.1 Soft-annealed shafts

Additional machining (such as journals, flattened areas, external threads) may require soft annealing of the corresponding areas. In this case, slight changes may occur in the dimensional and geometrical tolerances as well as the surface quality of the soft annealed area. Material discoloration may occur in the annealed area and there may be residual hardness in the transitional zone.



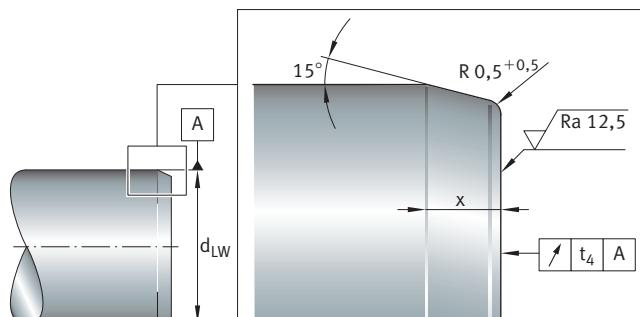
For corrosion-resistant steels, the X materials, only limited corrosion protection is provided here.

78 Soft-annealed shaft



0001A215

x Soft-annealed area

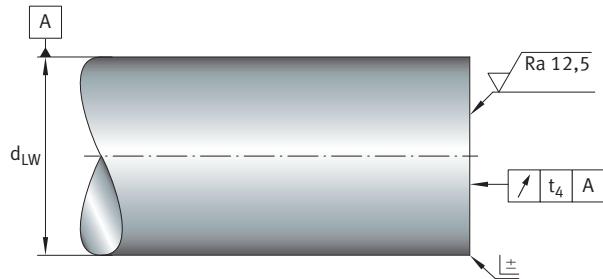

#### 6.1.7.2 Standard chamfer

After cutting to length, the shaft ends are chamfered on both sides. They can also be supplied without chamfers as a parting cut ►93 | 80.

20 Chamfer x, depending on shaft diameter  $d_{LW}$

| Shaft diameter |      | Chamfer   |    | Axial run-out |
|----------------|------|-----------|----|---------------|
| $d_{LW}$       | over | x         | U  | $t_4$         |
| mm             | to   | mm        | mm | mm            |
| -              | 8    | 0.5 × 45° | -  | 0.2           |
| 8              | 10   | 1         | +1 | 0.2           |
| 10             | 30   | 1.5       | +1 | 0.3           |
| 30             | 80   | 2.5       | +1 | 0.5           |

79 Standard chamfer



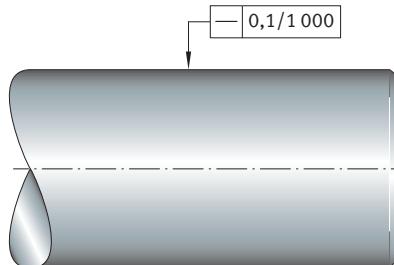

0001A219

### 6.1.7.3 Parting cut

In the case of a parting cut, the shaft is only cut to length. There is no additional machining of the end faces. This can result in a burr. The suffix is T.

⊕80 Parting cut




0001A21A

$t_4$  Axial run-out tolerance

### 6.1.7.4 Straightness

The standard straightness is shown.

⊕81 Straightness




0001A21B

### 6.1.7.5 Shaft with mortice and tenon joint

If the shaft length is in excess of the stock length, the shafts are joined together.

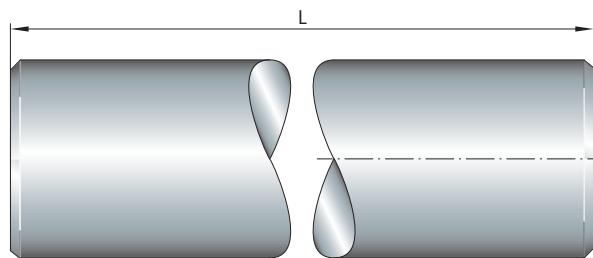
The individual sections of shafts are joined by means of mortice and tenon joints. The joints are marked accordingly. Shafts that are screwed together are available on request.

⊕82 Shaft with mortice and tenon joint



0001A21C

### 6.1.7.6 Length tolerance


Length tolerances U and L depend on the shaft length L.

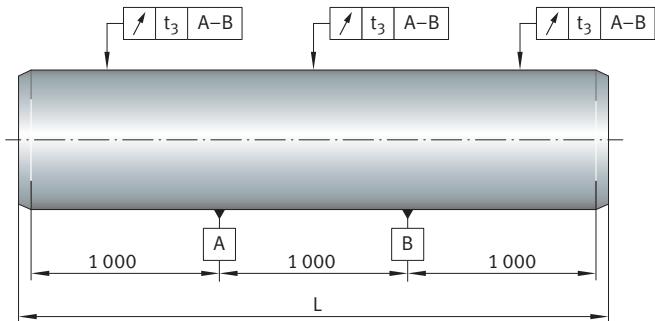
Special tolerances are possible on request.

21 Tolerances, depending on shaft length

| L       | to   | U       | L       |
|---------|------|---------|---------|
| over mm | mm   | Max. mm | Max. mm |
| -       | 400  | 0.5     | -0.5    |
| 400     | 1000 | 0.8     | -0.8    |
| 1000    | 2000 | 1.2     | -1.2    |
| 2000    | 4000 | 2       | -2      |
| 4000    | 6000 | 3       | -3      |

83 Length tolerance




0001A21D

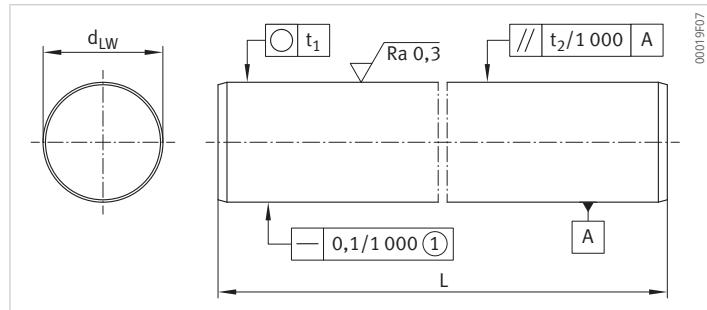
### 6.1.7.7 Straightness value

According to ISO 13012, the measurement points are at a distance of 1000 mm. Shafts with length 1000 mm have a maximum of two measurement points.

The straightness tolerance is half of the dial gauge value with a shaft revolution of 360.

84 Straightness measurement




0001A21E

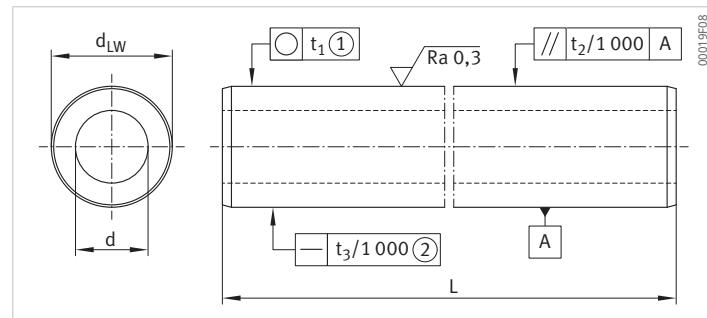
## 6.2 Product tables

### 6.2.1 Explanations

|          |               |                                                  |
|----------|---------------|--------------------------------------------------|
| d        | mm            | Inside diameter                                  |
| $d_{LW}$ | mm            | Shaft diameter                                   |
| L        | mm            | Length                                           |
| m        | g/m           | Mass                                             |
| SHD      | mm            | Surface hardening depth                          |
| $t_1$    | $\mu\text{m}$ | Roundness tolerance                              |
| $t_2$    | $\mu\text{m}$ | Parallelism tolerance according to DIN ISO 13012 |
| $t_3$    | $\mu\text{m}$ | Straightness tolerance                           |

## 6.2.2 Solid shafts W




W

(1) Length 400 mm: maximum straightness tolerance 0.04 mm

| Designation | m <sup>1)</sup> | d <sub>LW</sub> |    | L    | t <sub>1</sub> | t <sub>2</sub> <sup>2)</sup> | SHD <sup>3)</sup> |
|-------------|-----------------|-----------------|----|------|----------------|------------------------------|-------------------|
|             |                 | mm              | mm |      |                |                              |                   |
| -           | kg/m            | mm              | -  | mm   | µm             | µm                           | mm                |
| W05         | 0.15            | 5               | h6 | 4000 | 4              | 5                            | 0.4               |
| W06-H6      | 0.22            | 6               | h6 | 4000 | 4              | 5                            | 0.4               |
| W08         | 0.39            | 8               | h6 | 4000 | 4              | 6                            | 0.4               |
| W10         | 0.62            | 10              | h6 | 6000 | 4              | 6                            | 0.4               |
| W12         | 0.89            | 12              | h6 | 6000 | 5              | 8                            | 0.6               |
| W14         | 1.21            | 14              | h6 | 6000 | 5              | 6                            | 0.6               |
| W15         | 1.39            | 15              | h6 | 6000 | 5              | 8                            | 0.6               |
| W16         | 1.58            | 16              | h6 | 6000 | 5              | 8                            | 0.6               |
| W20         | 2.47            | 20              | h6 | 6000 | 6              | 9                            | 0.9               |
| W25         | 3.85            | 25              | h6 | 6000 | 6              | 9                            | 0.9               |
| W30         | 5.55            | 30              | h6 | 6000 | 6              | 9                            | 0.9               |
| W40         | 9.87            | 40              | h6 | 6000 | 7              | 11                           | 1.5               |
| W50         | 15.41           | 50              | h6 | 6000 | 7              | 11                           | 1.5               |
| W60         | 22.2            | 60              | h6 | 6000 | 8              | 13                           | 2.2               |
| W80         | 39.45           | 80              | h6 | 6000 | 8              | 13                           | 2.2               |
| W04         | 0.1             | 4               | h6 | 2500 | 4              | 5                            | 0.4               |

<sup>1)</sup> Weight for W04 is in kg.<sup>2)</sup> Diameter difference measurement.<sup>3)</sup> According to DIN ISO 13012.

## 6.2.3 Hollow shafts WH



WH

(1) Roundness corresponds to a maximum of half the diameter tolerance

(2) Length 500 mm, maximum straightness tolerance of 0.1 mm

| Designation | m     | d <sub>LW</sub><br>h7 <sup>3)</sup> | L<br>max. | d <sup>1)</sup> |      |       | t <sub>2</sub> | t <sub>3</sub> | SHD <sup>2)</sup><br>min. |
|-------------|-------|-------------------------------------|-----------|-----------------|------|-------|----------------|----------------|---------------------------|
|             |       |                                     |           | -               | U    | L     |                |                |                           |
| -           | kg/m  | mm                                  | mm        | mm              | µm   | µm    | µm             | µm             | mm                        |
| WH12        | 0.79  | 12                                  | 5700      | 4               | 0.45 | -0.45 | 7              | 0.3            | 0.8                       |
| WH16        | 1.26  | 16                                  | 5700      | 7               | 0.15 | -0.15 | 7              | 0.3            | 0.8                       |
| WH20        | 1.28  | 20                                  | 5700      | 14              | 0.15 | -0.15 | 9              | 0.2            | 1.2                       |
| WH25        | 2.4   | 25                                  | 5700      | 15.4            | 0.15 | -0.15 | 9              | 0.2            | 1.2                       |
| WH30        | 3.55  | 30                                  | 5700      | 18              | 0.15 | -0.15 | 9              | 0.2            | 1.5                       |
| WH40        | 5.7   | 40                                  | 7300      | 26              | 0.15 | -0.15 | 11             | 0.1            | 1.5                       |
| WH50        | 10.58 | 50                                  | 6700      | 28              | 0.25 | -0.25 | 11             | 0.1            | 1.5                       |
| WH60        | 14.2  | 60                                  | 5700      | 36              | 0.3  | -0.3  | 13             | 0.1            | 1.5                       |
| WH80        | 20.8  | 80                                  | 5700      | 57.4            | 0.35 | -0.35 | 13             | 0.1            | 2.2                       |

<sup>1)</sup> Wall thickness difference of basic material  $\pm 5\%$ .<sup>2)</sup> According to DIN ISO 13012.<sup>3)</sup> Diameter tolerance h6 on request.

### 6.3 Order example, ordering designation

If the standard designations are not sufficient to describe the shaft, please enclose a drawing with your request.

#### 6.3.1 Solid shaft, without machining

- Type: W
- Shaft diameter  $d_{LW}$ : 20 mm
- Tolerance: h6
- Material: Cf53
- Coating: –
- Length: 1200 mm
- Parting cut: –
- Standard chamfer: No suffix

Ordering designation:

- W20/h6-Cf53-1200

#### 6.3.2 Hollow shaft, without machining

- Type: WH
- Shaft diameter  $d_{LW}$ : 20 mm
- Tolerance: h7
- Material: C60
- Coating: –
- Length: 1500 mm
- Parting cut: T
- Standard chamfer: No suffix

Ordering designation:

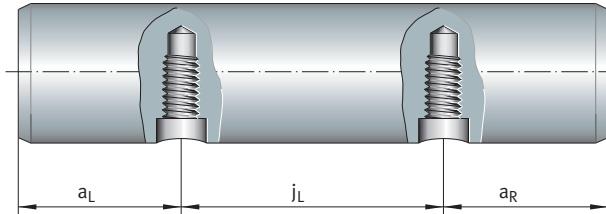
- WH20/h7-C60-1500-T

#### 6.3.3 Solid shaft, with machining

- Type: W
- Shaft diameter  $d_{LW}$ : 30 mm
- Tolerance: h7
- Material: Cf53
- Coating: Cr
- Hole pattern: B05
- Axial thread: M12
- Radial thread: M10
- Bore distance of radial thread: 100
- Length: 1110 mm
- Parting cut: T
- Standard chamfer: –
- Distance  $a_L$ : 60 mm
- Distance  $a_R$ : 50 mm

Ordering designation:

- W30/h7-Cf53-Cr-B05/M12-M10×100-1110-T-60-50


### 6.3.4 Possible order for standard shafts with machining

- Type: W, WH
- Shaft diameter  $d_{LW}$ : 10 mm ... 80 mm
- Tolerance <sup>1)</sup>: h6, h7
- Material <sup>2)</sup>: Cf53, X46, X90
- Coating: Cr, PROC
- Hole pattern: B01, B02, B03, B04, B05
- Axial thread <sup>1)</sup>: M3 ... M24
- Radial thread <sup>1)</sup>: M4 ... M14
- Bore distance for radial thread  $j_L$ : measured from the center of the hole,  $\blacktriangleright 99 | \square 85$
- Length <sup>1)</sup>: single piece to 6000 mm
- Parting cut: T
- Standard chamfer: No suffix
- Distance  $a_L$ :  $\blacktriangleright 99 | \square 85$
- Distance  $a_R$ :  $\blacktriangleright 99 | \square 85$

<sup>1)</sup> Depending on diameter and .

<sup>2)</sup> Hollow shafts are available only in Cf53 and C60.

$\square 85$  Hole spacing of the radial threads  $j_L$



00008DDA

### 6.3.5 Order examples

Elements of shaft guidance systems (linear ball bearings, solid and hollow shafts) must be ordered separately.

The ordering designation of an element consists of the code and specification; see the ordering designation for a shaft with axial thread and linear ball bearing.

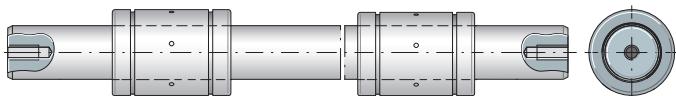
The codes are specified in the product tables. Specification details describe the unit in more detail.

#### Shaft guide, shaft with axial thread

- Corrosion-resistant shaft: W20/h6-X90
- Code for hole pattern: B02
- Axial thread: M8
- Shaft length: 3500 mm

Ordering designation:

- W20/h6-X90-B02/M8-3500


**Shaft guide, linear ball bearing**

- Linear ball bearing: KB
- Size code: 20
- Contact seal on both front sides: PP
- Corrotect-coating: RR
- Can be relubricated: AS

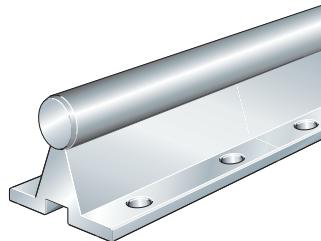
Ordering designation:

- **2 × KB20-PP-RR-AS**

86 Shaft with axial thread, two linear ball bearings



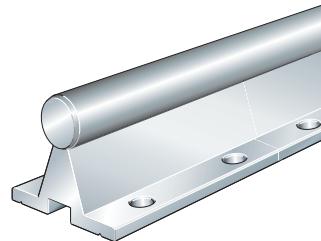
00008B4B


## 7 Support rails

### 7.1 Product design

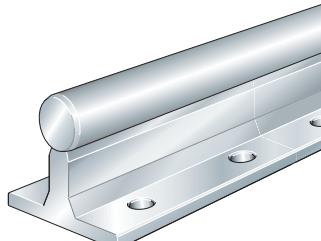
Support rails TS..W are composite rails, consisting of an aluminum support and a track shaft that is screwed onto the support body. The shaft protrudes approximately 2 mm 3 mm beyond the support at both ends.

The drive shaft is made of heat-treated steel ►82|6. Corrosion-resistant design on request.


87 TSNW



00008DFD


7

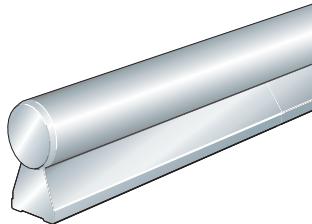
88 TSWW




00008DDD

89 TSWWA




00008DFE

④ 90 TSNW..-G4, TSNW..-G5



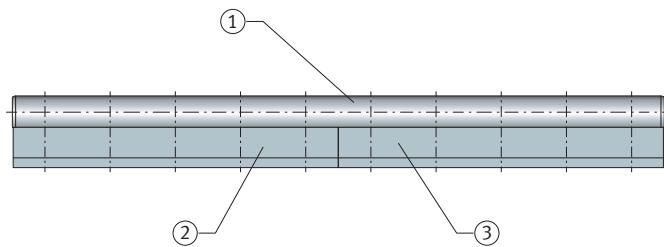
00008DFF

④ 91 TSUW



00008E00

### 7.1.1 Multi-part support rails

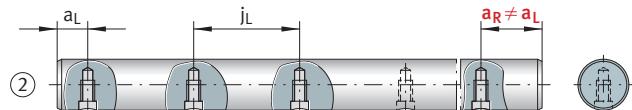
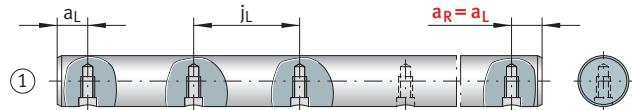

Depending on their length, support rails are made up of several sections.

If guides are of sufficient length to preclude the use of support rails TS..W with single-piece shafts, the shafts and support bodies are supplied in several parts. The joint locations on the shaft sections have mortice and tenon joints and are polished.

The joint locations on the shafts and support rails are offset from each other.

The maximum length of single-piece support rails is 6000 mm.

④ 92 Shaft and support rail unit with multiple support rail sections

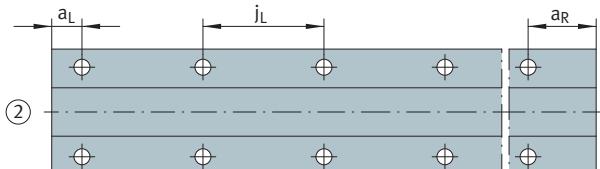
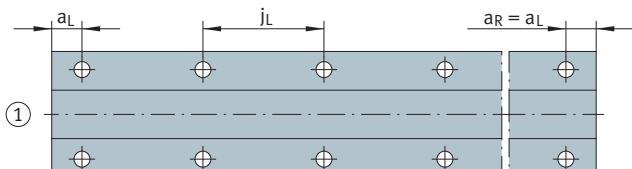




00008B2F

|   |                |   |                |
|---|----------------|---|----------------|
| 1 | Shaft          | 2 | Support rail 1 |
| 3 | Support rail 2 |   |                |

Unless stated otherwise, raceway shafts and shaft and support rail units are supplied with a symmetrical hole pattern.

## □93 Hole patterns for shafts with one row of holes


1 Symmetrical hole pattern

2 Unsymmetrical hole pattern

00008B2D

## □94 Hole patterns for support rails with two rows of holes



1 Symmetrical hole pattern

2 Unsymmetrical hole pattern

0000908C

An asymmetrical hole pattern is also possible on request.  $a_{L\ max} \geq a_L \geq a_{L\ min}$  and  $a_{R\ max} \geq a_R \geq a_{R\ min}$  must apply.

The number of pitches between holes is the rounded whole number equivalent to:

f11

$$n = \frac{l - 2 \cdot a_{L\ min}}{j_L}$$

For distances  $a_L$  and  $a_R$ , the following generally applies:

f12

$$a_L + a_R = l - n \cdot j_L$$

For raceway shafts and shaft and support rail units with a symmetrical hole pattern:

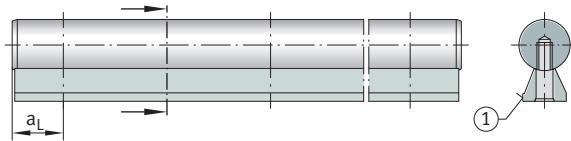
f13

$$a_L = a_R = \frac{1}{2} \cdot (l - n \cdot j_L)$$

Number of holes:

f14

x = n + 1


|       |    |                                                             |
|-------|----|-------------------------------------------------------------|
| $a_L$ | mm | Radial hole, edge distance left                             |
| $a_R$ | mm | Radial hole, edge distance right                            |
| $j_L$ | mm | Distance between holes                                      |
| $l$   | mm | Rail length                                                 |
| $n$   | -  | Maximum possible number of pitches                          |
| $x$   | -  | Number of holes, for rails with T-grooves: Number of screws |

7



If the minimum and maximum values for  $a_L$  and  $a_R$  are not observed, the counterbores of the holes may be intersected. The position  $a_L$  for the support rail TSUW is shown ►104 | 95.

95 Hole patterns for support rail TSUW

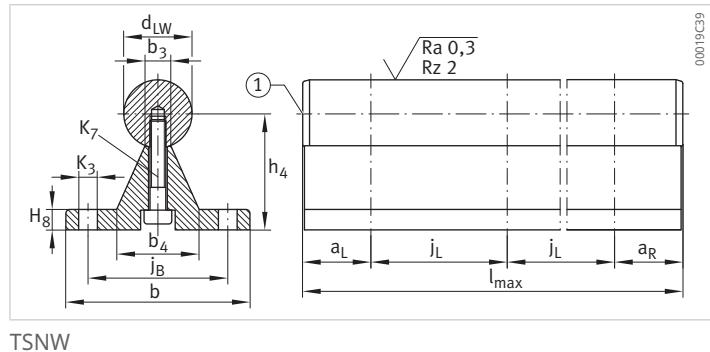


00019C37

1 Saddle plate

### 7.1.2 Length tolerances for support rails

22 Length tolerances of the single-piece and multi-part support rails


| L    |      | U   | L    |
|------|------|-----|------|
| mm   | mm   | mm  | mm   |
| over | to   |     |      |
| -    | 400  | 0.5 | -0.5 |
| 400  | 1000 | 0.8 | -0.8 |
| 1000 | 2000 | 1.2 | -1.2 |
| 2000 | 4000 | 2   | -2   |
| 4000 | 6000 | 3   | -3   |

## 7.2 Product tables

### 7.2.1 Explanations

|          |     |                                                      |
|----------|-----|------------------------------------------------------|
| (1)      | -   | Protrusion of the shaft per side approx. 2 mm        |
| $\Delta$ | mm  | Deviation                                            |
| $a_2$    | mm  | Distance of stop side                                |
| $a_L$    | mm  | Distance from the start of the rail to the next hole |
| $a_R$    | mm  | Distance from the end of the rail to the next hole   |
| $b$      | mm  | Width of the support rail base                       |
| $b_1$    | mm  | Width of the support rail base                       |
| $b_3$    | mm  | Profile cross-section                                |
| $B_3$    | mm  | Profile cross-section                                |
| $b_4$    | mm  | Profile cross-section                                |
| $d_{LW}$ | mm  | Shaft diameter                                       |
| $G_1$    | -   | Connecting thread                                    |
| $G_2$    | mm  | Through bore                                         |
| $G_{kl}$ | -   | Accuracy class                                       |
| $h_4$    | mm  | Center distance                                      |
| $H_5$    | mm  | Height of the support rail base                      |
| $h_7$    | mm  | Screw-in depth of the mounting hole                  |
| $H_8$    | mm  | Thickness of the support rail base                   |
| $j_B$    | mm  | Distance between holes                               |
| $J_B$    | mm  | Mounting hole distance                               |
| $j_L$    | mm  | Distance between holes                               |
| $J_L$    | mm  | Distance between mounting holes                      |
| $K_3$    | mm  | Diameter of the mounting hole                        |
| $K_6$    | mm  | Through bore                                         |
| $K_7$    | -   | Connecting screw                                     |
| $l$      | mm  | Rail length                                          |
| $L$      | mm  | Lower limit deviation                                |
| $m$      | g/m | Mass                                                 |
| $U$      | mm  | Upper limit deviation                                |

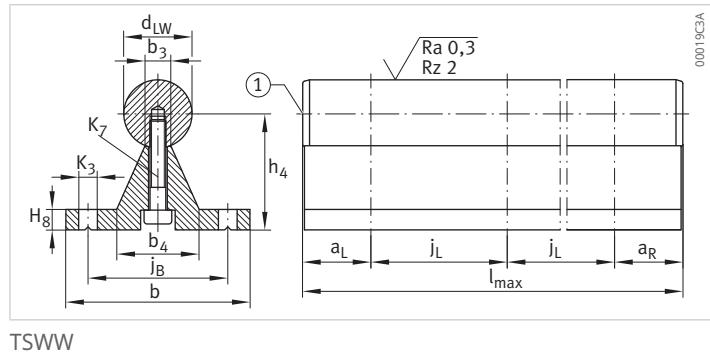
## 7.2.2 Support rails TSNW



TSNW

| Designation | m     | d <sub>LW</sub><br>h6 | b  | h <sub>4</sub> <sup>1)</sup><br>±0.02 | l <sub>max</sub> <sup>2)</sup><br>±3 | b <sub>3</sub> | b <sub>4</sub> |
|-------------|-------|-----------------------|----|---------------------------------------|--------------------------------------|----------------|----------------|
|             |       |                       |    |                                       |                                      |                |                |
| -           | kg/m  | mm                    | mm | mm                                    | mm                                   | mm             | mm             |
| TSNW12      | 1.67  | 12                    | 40 | 22                                    | 6000                                 | 5              | 17             |
| TSNW16      | 2.95  | 16                    | 45 | 26                                    | 6000                                 | 6.8            | 22.4           |
| TSNW20      | 3.95  | 20                    | 52 | 32                                    | 6000                                 | 7.5            | 26.3           |
| TSNW25      | 5.6   | 25                    | 57 | 36                                    | 6000                                 | 9.8            | 30             |
| TSNW30      | 7.88  | 30                    | 69 | 42                                    | 6000                                 | 11             | 33.4           |
| TSNW40      | 12.83 | 40                    | 73 | 50                                    | 6000                                 | 14.5           | 39.4           |
| TSNW50      | 19.38 | 50                    | 84 | 60                                    | 6000                                 | 18.5           | 45.2           |

<sup>1)</sup> Based on the nominal shaft diameter, measured in mounted condition.


<sup>2)</sup> Maximum length of single-piece support rails; longer support rails, ►102 | 92. Depending on the length of the support rail, the support body is made up of several sections.

3) Dimensions a<sub>L</sub> and a<sub>R</sub> depend on the length of the support rail.

4) For mounting screws DIN 7984. Secure the screws, especially if preload losses can occur.

| j <sub>B</sub> | j <sub>L</sub> | a <sub>L</sub> <sup>3)</sup> |      | a <sub>R</sub> <sup>3)</sup> |      | H <sub>8</sub> | K <sub>3</sub> <sup>4)</sup> | K <sub>7</sub> | ISO 4762 |
|----------------|----------------|------------------------------|------|------------------------------|------|----------------|------------------------------|----------------|----------|
|                |                | min.                         | max. | min.                         | max. |                |                              |                |          |
| mm             | mm             | mm                           | mm   | mm                           | mm   | mm             | mm                           | -              |          |
| 29             | 75             | 20                           | 69   | 20                           | 69   | 5              | 4.5                          | M4×18          |          |
| 33             | 100            | 20                           | 93   | 20                           | 93   | 5              | 5.5                          | M5×22          |          |
| 37             | 100            | 20                           | 92   | 20                           | 92   | 6              | 6.6                          | M6×25          |          |
| 42             | 120            | 20                           | 110  | 20                           | 110  | 6              | 6.6                          | M8×30          |          |
| 51             | 150            | 20                           | 139  | 20                           | 139  | 7              | 9                            | M10×35         |          |
| 55             | 200            | 20                           | 189  | 20                           | 189  | 8              | 9                            | M10×35         |          |
| 63             | 200            | 20                           | 188  | 20                           | 188  | 9              | 11                           | M12×40         |          |

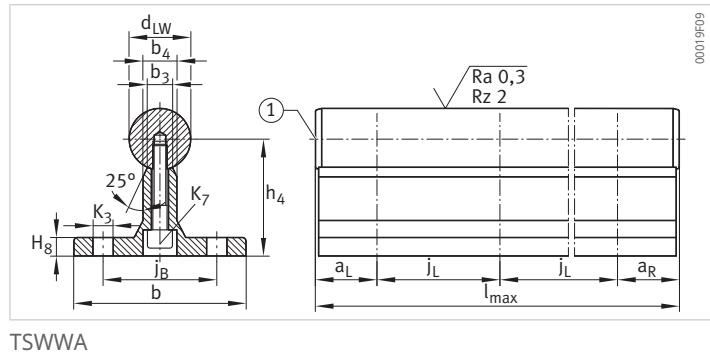
## 7.2.3 Support rails TSWW



TSWW

| Designation | m<br>kg/m | d <sub>LW</sub><br>h6 | b<br>mm | h <sub>4</sub> <sup>1)</sup><br>±0.02 | l <sub>max</sub> <sup>2)</sup><br>±3 | b <sub>3</sub><br>mm | b <sub>4</sub><br>mm |
|-------------|-----------|-----------------------|---------|---------------------------------------|--------------------------------------|----------------------|----------------------|
|             |           |                       |         |                                       |                                      |                      |                      |
| -           |           |                       | mm      | mm                                    | mm                                   | mm                   | mm                   |
| TSWW12      | 1.67      | 12                    | 40      | 22                                    | 6000                                 | 5                    | 17                   |
| TSWW16      | 3.15      | 16                    | 54      | 32                                    | 6000                                 | 6.8                  | 24.7                 |
| TSWW20      | 4.03      | 20                    | 54      | 34.02                                 | 6000                                 | 7.8                  | 24.7                 |
| TSWW25      | 5.9       | 25                    | 65      | 39.66                                 | 6000                                 | 9.3                  | 30.3                 |
| TSWW30      | 7.58      | 30                    | 65      | 42.19                                 | 6000                                 | 9.3                  | 30.3                 |
| TSWW40      | 14.25     | 40                    | 85      | 60                                    | 6000                                 | 16.3                 | 46                   |
| TSWW50      | 19.75     | 50                    | 85      | 65.06                                 | 6000                                 | 16.3                 | 46                   |

<sup>1)</sup> Based on the nominal shaft diameter, measured in mounted condition.


<sup>2)</sup> Maximum length of single-piece support rails; longer support rails, ►102 | 92. Depending on the length of the support rail, the support body is made up of several sections.

3) Dimensions a<sub>L</sub> and a<sub>R</sub> depend on the length of the support rail.

4) For mounting screws ISO 4762 or ISO 4017 (TSWW12, DIN 7984). Secure the screws, especially if preload losses can occur.

| j <sub>B</sub> | j <sub>L</sub> | a <sub>L</sub> <sup>3)</sup> |      | a <sub>R</sub> <sup>3)</sup> |      | H <sub>8</sub> | K <sub>3</sub> <sup>4)</sup> | K <sub>7</sub> |
|----------------|----------------|------------------------------|------|------------------------------|------|----------------|------------------------------|----------------|
|                |                | min.                         | max. | min.                         | max. |                |                              |                |
| mm             | mm             | mm                           | mm   | mm                           | mm   | mm             | mm                           | -              |
| 29             | 120            | 20                           | 114  | 20                           | 114  | 5              | 4.5                          | M4×18          |
| 41             | 150            | 20                           | 143  | 20                           | 143  | 6              | 5.5                          | M5×25          |
| 41             | 150            | 20                           | 143  | 20                           | 143  | 6              | 5.5                          | M5×25          |
| 51             | 150            | 20                           | 142  | 20                           | 142  | 6              | 6.6                          | M6×30          |
| 51             | 150            | 20                           | 142  | 20                           | 142  | 6              | 6.6                          | M6×30          |
| 65             | 150            | 20                           | 139  | 20                           | 139  | 10             | 9                            | M10×45         |
| 65             | 150            | 20                           | 139  | 20                           | 139  | 10             | 9                            | M10×45         |

## 7.2.4 Support rails TSWWA

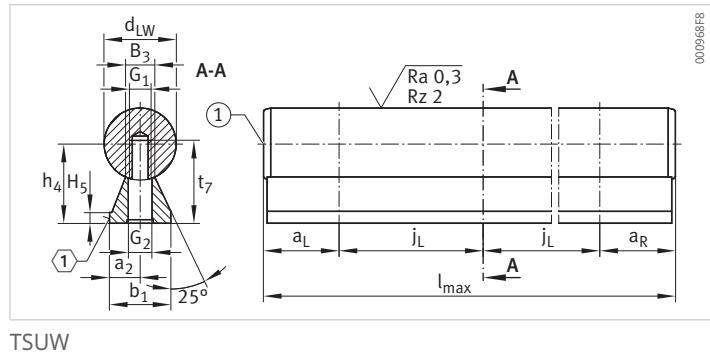


7

| Designation | m    | d <sub>LW</sub><br>h6 | b  | h <sub>4</sub> <sup>1)</sup><br>±0.02 | l <sub>max</sub> <sup>2)</sup><br>±3 | b <sub>3</sub> | b <sub>4</sub> |
|-------------|------|-----------------------|----|---------------------------------------|--------------------------------------|----------------|----------------|
|             |      |                       |    |                                       |                                      |                |                |
| -           | kg/m | mm                    | mm | mm                                    | mm                                   | mm             | mm             |
| TSWWA12     | 1.93 | 12                    | 43 | 28                                    | 6000                                 | 5.4            | 9              |
| TSWWA16     | 2.8  | 16                    | 48 | 30                                    | 6000                                 | 7              | 10             |
| TSWWA20     | 4.12 | 20                    | 56 | 38                                    | 6000                                 | 8.2            | 11             |
| TSWWA25     | 5.83 | 25                    | 60 | 42                                    | 6000                                 | 10.4           | 14             |
| TSWWA30     | 8.5  | 30                    | 74 | 53                                    | 6000                                 | 11             | 14             |

1) Based on the nominal shaft diameter, measured in mounted condition.

2) Maximum length of single-piece support rails; longer support rails, ►102 | □92. Depending on the length of the support rail, the support body is made up of several sections.


3) Dimensions a<sub>L</sub> and a<sub>R</sub> depend on the length of the support rail.

4) For mounting screws ISO 4762 or ISO 4017. Secure the screws, especially if preload losses can occur.

5) For TSWWA12: DIN 7984 screws.

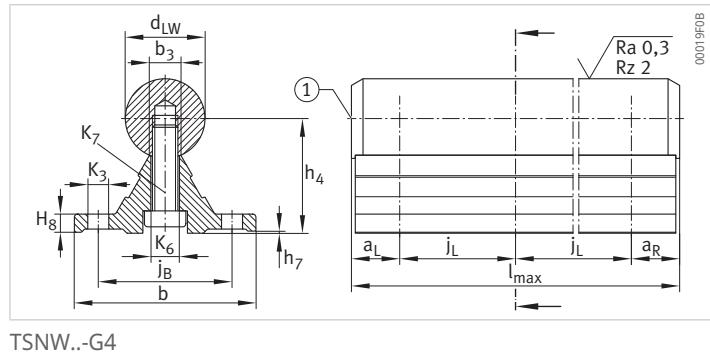
| j <sub>B</sub> | j <sub>L</sub> | a <sub>L</sub> <sup>3)</sup> |      | a <sub>R</sub> <sup>3)</sup> |      | H <sub>8</sub> | K <sub>3</sub> <sup>4)</sup> | K <sub>7</sub> <sup>5)</sup> |
|----------------|----------------|------------------------------|------|------------------------------|------|----------------|------------------------------|------------------------------|
|                |                | min.                         | max. | min.                         | max. |                |                              |                              |
| mm             | mm             | mm                           | mm   | mm                           | mm   | mm             | mm                           | -                            |
| 29             | 75             | 20                           | 69   | 20                           | 69   | 5              | 4.5                          | M4×25                        |
| 33             | 100            | 20                           | 93   | 20                           | 93   | 5              | 5.5                          | M5×25                        |
| 37             | 100            | 20                           | 92   | 20                           | 92   | 6              | 6.6                          | M6×30                        |
| 42             | 120            | 20                           | 110  | 20                           | 110  | 6              | 6.6                          | M8×30                        |
| 51             | 150            | 20                           | 139  | 20                           | 139  | 8              | 9                            | M10×40                       |

## 7.2.5 Support rails TSUW



TSUW

| Designation | m<br>kg/m | d <sub>LW</sub><br>mm | b <sub>1</sub><br>mm | h <sub>4</sub> <sup>1)</sup><br>mm | l <sub>max</sub> <sup>2)</sup><br>mm | a <sub>2</sub><br>mm | B <sub>3</sub><br>mm |
|-------------|-----------|-----------------------|----------------------|------------------------------------|--------------------------------------|----------------------|----------------------|
|             |           |                       |                      |                                    |                                      |                      |                      |
| -           |           |                       |                      |                                    |                                      |                      |                      |
| TSUW12      | 1.1       | 12                    | 11                   | 14.5                               | 6000                                 | 5.5                  | 5                    |
| TSUW16      | 1.88      | 16                    | 14                   | 18                                 | 6000                                 | 7                    | 6.8                  |
| TSUW20      | 2.92      | 20                    | 17                   | 22                                 | 6000                                 | 8.5                  | 7.8                  |
| TSUW25      | 4.42      | 25                    | 21                   | 26                                 | 6000                                 | 10.5                 | 9.8                  |
| TSUW30      | 6.22      | 30                    | 23                   | 30                                 | 6000                                 | 11.5                 | 11                   |
| TSUW40      | 11.03     | 40                    | 30                   | 39                                 | 6000                                 | 15                   | 14.5                 |
| TSUW50      | 16.98     | 50                    | 35                   | 46                                 | 6000                                 | 17.5                 | 18.5                 |


<sup>1)</sup> Based on the nominal shaft diameter, measured in mounted condition.

<sup>2)</sup> Maximum length of single-piece support rails; longer support rails, ►102 | 92. Depending on the length of the support rail, the support body is made up of several sections.

<sup>3)</sup> Dimensions a<sub>L</sub> and a<sub>R</sub> depend on the length of the support rail.

| j <sub>L</sub> | a <sub>L</sub> <sup>3)</sup> |      | a <sub>R</sub> <sup>3)</sup> |      | H <sub>5</sub> | G <sub>1</sub> | G <sub>2</sub> | t <sub>7</sub> |
|----------------|------------------------------|------|------------------------------|------|----------------|----------------|----------------|----------------|
|                | min.                         | max. | min.                         | max. |                |                |                |                |
| mm             | mm                           | mm   | mm                           | mm   | mm             | -              | mm             | mm             |
| 75             | 20                           | 70   | 20                           | 70   | 3              | M4             | 4.5            | 15.5           |
| 75             | 20                           | 70   | 20                           | 70   | 3              | M5             | 5.5            | 19             |
| 75             | 20                           | 69   | 20                           | 69   | 3              | M6             | 6.6            | 23             |
| 75             | 20                           | 68   | 20                           | 68   | 3              | M8             | 9              | 28.5           |
| 100            | 20                           | 92   | 20                           | 92   | 3              | M10            | 11             | 31.5           |
| 100            | 20                           | 91   | 20                           | 91   | 4              | M12            | 13.5           | 39.5           |
| 100            | 20                           | 90   | 20                           | 90   | 5              | M14            | 15.5           | 46             |

## 7.2.6 Support rails TSNW..-G4



TSNW..-G4

| Designation | m    | d <sub>LW</sub><br>h6 | b  | h <sub>4</sub> <sup>1)</sup> |      |       | l <sub>max</sub> <sup>2)</sup> | b <sub>3</sub> | j <sub>B</sub> | j <sub>L</sub> |
|-------------|------|-----------------------|----|------------------------------|------|-------|--------------------------------|----------------|----------------|----------------|
|             |      |                       |    | -                            | U    | L     |                                |                |                |                |
| -           | kg/m | mm                    | mm | mm                           | mm   | mm    | mm                             | mm             | mm             | mm             |
| TSNW12-G4   | 1.6  | 12                    | 40 | 22                           | 0.1  | -0.1  | 4000                           | 5              | 29             | 75             |
| TSNW16-G4   | 2.5  | 16                    | 45 | 26                           | 0.1  | -0.1  | 4000                           | 6.8            | 33             | 100            |
| TSNW20-G4   | 3.8  | 20                    | 52 | 32                           | 0.1  | -0.1  | 4000                           | 7.8            | 37             | 100            |
| TSNW25-G4   | 5.3  | 25                    | 57 | 36                           | 0.1  | -0.1  | 4000                           | 9.8            | 42             | 120            |
| TSNW30-G5   | 7.5  | 30                    | 69 | 42                           | 0.15 | -0.15 | 4000                           | 11             | 51             | 150            |
| TSNW40-G5   | 12.4 | 40                    | 73 | 50                           | 0.15 | -0.15 | 4000                           | 14.5           | 55             | 200            |

1) Based on the nominal shaft diameter, measured in mounted condition.

2) Maximum length of single-piece support rails; longer support rails, ►102|⊕92. Depending on the length of the support rail, the support body is made up of several sections.

3) Dimensions a<sub>L</sub> and a<sub>R</sub> depend on the length of the support rail.

4) Maximum deviation from dimension h<sub>4</sub>, measured on a support rail for a length of 1000 mm.

| $a_L$ <sup>3)</sup> |      | $a_R$ <sup>3)</sup> |      | $H_8$ | $h_7$ | $K_3$ | $K_6$ | $K_7$  | Deviation of $h_4$ <sup>4)</sup> |          |          |
|---------------------|------|---------------------|------|-------|-------|-------|-------|--------|----------------------------------|----------|----------|
| min.                | max. | min.                | max. |       |       |       |       |        | ISO 4762                         | $G_{kl}$ | $\Delta$ |
| mm                  | mm   | mm                  | mm   | mm    | mm    | mm    | mm    | -      | -                                | mm       |          |
| 20                  | 69   | 20                  | 69   | 5     | 0.2   | 4.5   | 4.5   | M4×18  | G4                               | 0.03     |          |
| 20                  | 93   | 20                  | 93   | 5     | 0.2   | 5.5   | 5.5   | M5×22  | G4                               | 0.03     |          |
| 20                  | 92   | 20                  | 92   | 6     | 0.2   | 6.6   | 6.6   | M6×25  | G4                               | 0.03     |          |
| 20                  | 110  | 20                  | 110  | 6     | 0.3   | 6.6   | 9     | M8×30  | G4                               | 0.03     |          |
| 20                  | 139  | 20                  | 139  | 7     | 0.3   | 9     | 11    | M10×30 | G5                               | 0.04     |          |
| 20                  | 189  | 20                  | 189  | 8     | 0.3   | 9     | 11    | M10×35 | G5                               | 0.04     |          |

## 7.3 Order example, ordering designation

### 7.3.1 Possible ordering designation for standard support rails

- Type: TSWW, TSNW, TSUW, TSWWA
- Shaft diameter  $d_{LW}$ : 12 mm ... 50 mm
- Length: 1200 mm
- Distance  $a_L$ : Distance between the first hole and the start of the shaft
- Distance  $a_R$ : Distance between the last hole and the end of the shaft
- Corrosion-resistant design: on request

7

### 7.3.2 Support rail

- Type: TSNW
- Shaft diameter  $d_{LW}$ : 25 mm
- Length: 1253 mm
- Distance  $a_L$ : 26 mm
- Distance  $a_R$ : 27 mm
- Corrosion-resistant design: on request

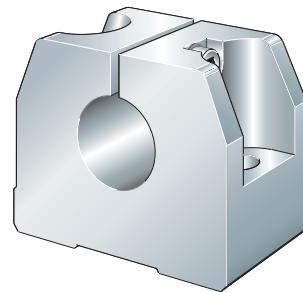
Ordering designation:

- TSNW25-1253-26-27

## 8 Shaft support blocks

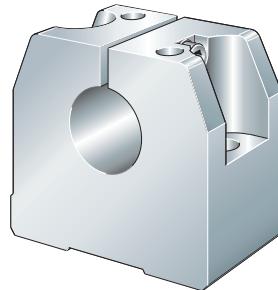
### 8.1 Product design

Depending on the type series, the shaft support blocks have through-holes or threaded holes.


An aluminum alloy or die-cast zinc is used as the material.

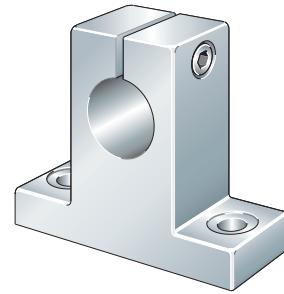
The series GWA..-B is identical to the series GW, but suitable for larger mounting screws.

They are suitable for all solid shafts and hollow shafts in this catalog.


Shaft support blocks support shafts and fix them to the shaft ends.

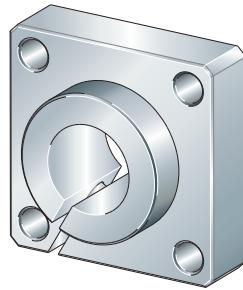
□ 96 GWH..-B




00008D9D

□ 97 GWN..-B




00008D9E

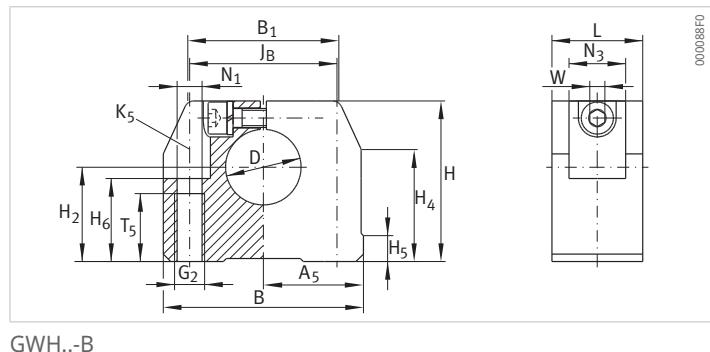
□ 98 GW, GWA..-B



00008D9C

99 FW..-B



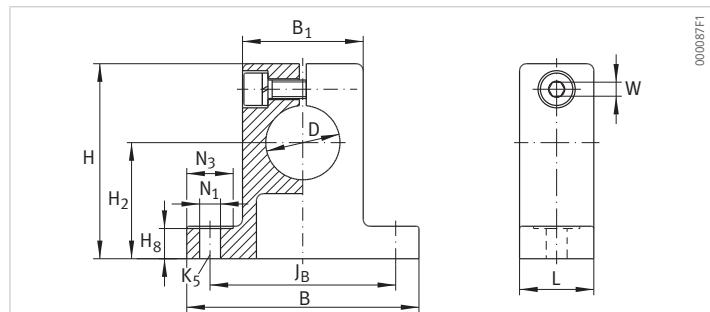

00019FDF

## 8.2 Product tables

### 8.2.1 Explanations

|                 |    |                              |
|-----------------|----|------------------------------|
| A <sub>5</sub>  | mm | Stop side distance           |
| B               | mm | Width of the housing         |
| B <sub>1</sub>  | mm | Width of housing flange      |
| D               | mm | Bore diameter                |
| D <sub>1</sub>  | mm | Flange diameter              |
| G <sub>2</sub>  | -  | Connecting thread            |
| H               | mm | Height of the housing        |
| H <sub>2</sub>  | mm | Center distance              |
| H <sub>4</sub>  | mm | Height of housing flange     |
| H <sub>5</sub>  | mm | Height of stop edge          |
| H <sub>6</sub>  | mm | Height of the mounting hole  |
| H <sub>8</sub>  | mm | Height of the mounting hole  |
| J <sub>B</sub>  | mm | Mounting hole distance       |
| J <sub>B1</sub> | mm | Pin hole distance            |
| J <sub>L</sub>  | mm | Pin hole distance            |
| K <sub>5</sub>  | -  | Fixing screw                 |
| L               | mm | Length of the housing        |
| L               | mm | Lower limit deviation        |
| L <sub>1</sub>  | mm | Connection dimension         |
| m               | g  | Mass                         |
| N <sub>1</sub>  | mm | Diameter of the through bore |
| N <sub>3</sub>  | mm | Diameter of the counterbore  |
| N <sub>4</sub>  | mm | Diameter of the pin bore     |
| T <sub>5</sub>  | mm | Thread depth                 |
| U               | mm | Upper limit deviation        |
| W               | mm | Width across flats           |

## 8.2.2 Shaft support blocks GWH..-B



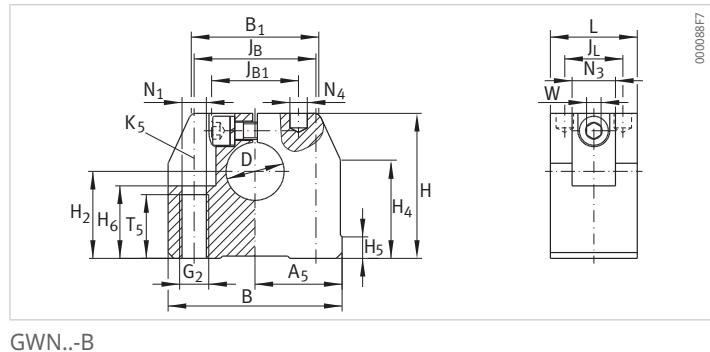

| Designation | m   | D  | B   | L  | H    | J <sub>B</sub> | A <sub>5</sub> | B <sub>1</sub> |
|-------------|-----|----|-----|----|------|----------------|----------------|----------------|
|             |     |    |     |    |      |                |                |                |
| -           | kg  | mm | mm  | mm | mm   | mm             | mm             | mm             |
| GWH06-B     | 30  | 6  | 32  | 16 | 27   | 22             | 16             | 25             |
| GWH08-B     | 30  | 8  | 32  | 16 | 27   | 22             | 16             | 25             |
| GWH10-B     | 50  | 10 | 40  | 18 | 33   | 27             | 20             | 32             |
| GWH12-B     | 50  | 12 | 40  | 18 | 33   | 27             | 20             | 32             |
| GWH14-B     | 70  | 14 | 43  | 20 | 36.5 | 32             | 21.5           | 34             |
| GWH16-B     | 70  | 16 | 43  | 20 | 36.5 | 32             | 21.5           | 34             |
| GWH20-B     | 120 | 20 | 53  | 24 | 42.5 | 39             | 26.5           | 40             |
| GWH25-B     | 170 | 25 | 60  | 28 | 52.5 | 44             | 30             | 44             |
| GWH30-B     | 220 | 30 | 67  | 30 | 60   | 49             | 33.5           | 49.5           |
| GWH40-B     | 480 | 40 | 87  | 40 | 73.5 | 66             | 43.5           | 63             |
| GWH50-B     | 820 | 50 | 103 | 50 | 92   | 80             | 51.5           | 74             |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

| H <sub>2</sub><br>±0.01 | H <sub>4</sub> | H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | W   |
|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|-----|
| mm                      | mm             | mm             | mm             | mm             | -              | mm             | mm             | -                            | mm  |
| 15                      | 20.6           | 5              | 11             | 13             | M5             | 4.3            | 10             | M4                           | 2.5 |
| 16                      | 20.6           | 5              | 11             | 13             | M5             | 4.3            | 10             | M4                           | 2.5 |
| 18                      | 25.1           | 5              | 13             | 16             | M6             | 5.3            | 11             | M5                           | 3   |
| 19                      | 25.1           | 5              | 13             | 16             | M6             | 5.3            | 11             | M5                           | 3   |
| 20                      | 28.1           | 6.9            | 13             | 18             | M6             | 5.3            | 11             | M5                           | 3   |
| 22                      | 28.1           | 6.9            | 13             | 22             | M6             | 5.3            | 11             | M5                           | 3   |
| 25                      | 29.8           | 7.4            | 18             | 22             | M8             | 6.6            | 15             | M6                           | 4   |
| 31                      | 36.6           | 9.9            | 22             | 26             | M10            | 8.4            | 18             | M8                           | 5   |
| 34                      | 42.7           | 8              | 22             | 29             | M10            | 8.4            | 18             | M8                           | 5   |
| 42                      | 49.7           | 12.8           | 26             | 38             | M12            | 10.5           | 20             | M10                          | 6   |
| 50                      | 62.3           | 10.9           | 34             | 46             | M16            | 13.5           | 24             | M12                          | 8   |

## 8.2.3 Shaft support blocks GW




GW, GWA..-B

| Designation | m<br>kg | D<br>mm | B<br>mm | L<br>mm | H<br>mm | J <sub>B</sub> |           |
|-------------|---------|---------|---------|---------|---------|----------------|-----------|
|             |         |         |         |         |         | -              | U/L<br>mm |
| GW10        | 30      | 10      | 37      | 11      | 30      | 28             | ±0.15     |
| GW12        | 40      | 12      | 42      | 12      | 35      | 32             | ±0.15     |
| GW14        | 60      | 14      | 46      | 14      | 38      | 36             | ±0.15     |
| GW16        | 80      | 16      | 50      | 16      | 42      | 40             | ±0.15     |
| GW20        | 150     | 20      | 60      | 20      | 50      | 45             | ±0.15     |
| GW25        | 260     | 25      | 74      | 25      | 58      | 60             | ±0.15     |
| GW30        | 380     | 30      | 84      | 28      | 68      | 68             | ±0.2      |
| GW40        | 670     | 40      | 108     | 32      | 86      | 86             | ±0.2      |
| GW50        | 1380    | 50      | 130     | 40      | 100     | 108            | ±0.2      |

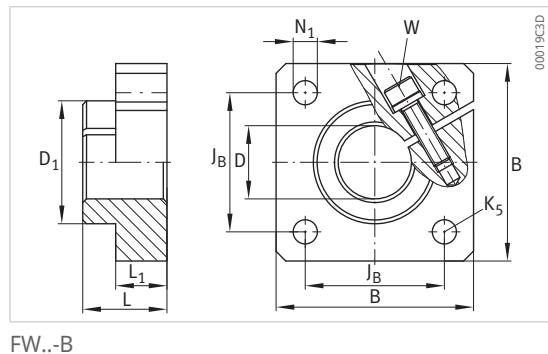
<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

| B <sub>1</sub> | H <sub>2</sub> | H <sub>8</sub> | N <sub>1</sub> | N <sub>3</sub> | K <sub>5</sub> <sup>1)</sup> | W   |
|----------------|----------------|----------------|----------------|----------------|------------------------------|-----|
| mm             | mm             | mm             | mm             | mm             | -                            | mm  |
| 18             | 17             | 5              | 3.4            | 8              | M3                           | 2.5 |
| 20             | 20             | 5.5            | 4.5            | 10             | M4                           | 3   |
| 23             | 22             | 6              | 4.5            | 10             | M4                           | 3   |
| 26             | 25             | 6.5            | 4.5            | 10             | M4                           | 3   |
| 32             | 30             | 7.5            | 4.5            | 10             | M4                           | 3   |
| 38             | 35             | 8.5            | 5.5            | 11             | M5                           | 4   |
| 45             | 40             | 9.5            | 6.6            | 13             | M6                           | 5   |
| 56             | 50             | 12             | 9.1            | 18             | M8                           | 6   |
| 80             | 60             | 14             | 9              | 18             | M8                           | 6   |

### 8.2.4 Shaft support blocks GWN..-B



GWN..-B


| Designation | m     | D<br>H8 | B   | L  | H   | JB  |       | JB1 | B1 | A5   |
|-------------|-------|---------|-----|----|-----|-----|-------|-----|----|------|
|             |       |         |     |    |     | -   | U/L   |     |    |      |
| -           | kg    | mm      | mm  | mm | mm  | mm  | mm    | mm  | mm | mm   |
| GWN12-B     | 0.06  | 12      | 43  | 20 | 35  | 30  | ±0.15 | 20  | 34 | 21.5 |
| GWN16-B     | 0.105 | 16      | 53  | 24 | 42  | 38  | ±0.15 | 26  | 40 | 26.5 |
| GWN20-B     | 0.17  | 20      | 60  | 30 | 50  | 42  | ±0.15 | 30  | 44 | 30   |
| GWN25-B     | 0.33  | 25      | 78  | 38 | 60  | 56  | ±0.15 | 40  | 60 | 39   |
| GWN30-B     | 0.45  | 30      | 87  | 40 | 70  | 64  | ±0.15 | 45  | 63 | 43.5 |
| GWN40-B     | 0.82  | 40      | 108 | 48 | 90  | 82  | ±0.15 | 65  | 76 | 54   |
| GWN50-B     | 1.36  | 50      | 132 | 58 | 105 | 100 | ±0.2  | 70  | 90 | 66   |

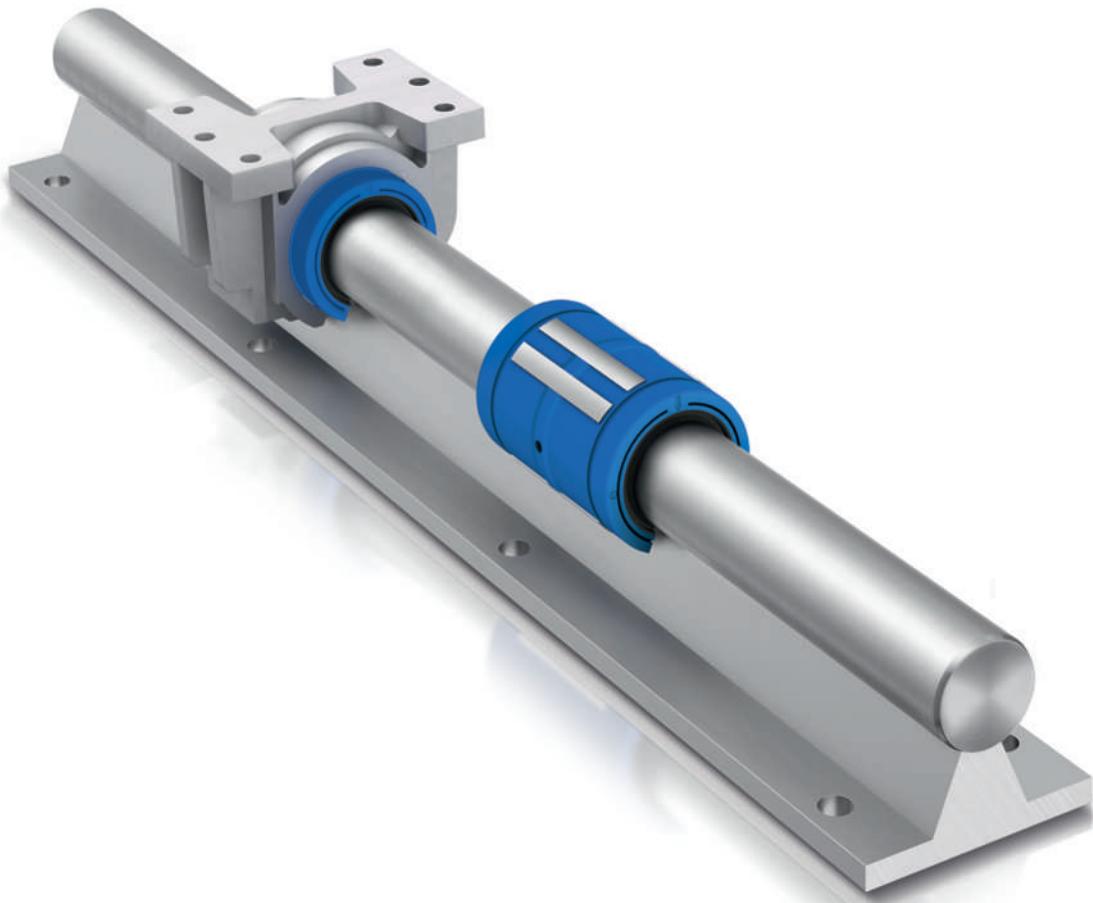
1) Centering for pin hole.

2) For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.

| J <sub>L</sub> | H <sub>2</sub><br>±0.01 | H <sub>4</sub> | H <sub>5</sub> | T <sub>5</sub> | H <sub>6</sub> | G <sub>2</sub> | N <sub>1</sub> | N <sub>4</sub> <sup>1)</sup> | N <sub>3</sub> | K <sub>5</sub> <sup>2)</sup> | W  |
|----------------|-------------------------|----------------|----------------|----------------|----------------|----------------|----------------|------------------------------|----------------|------------------------------|----|
|                |                         |                |                |                |                |                |                |                              |                |                              |    |
| mm             | mm                      | mm             | mm             | mm             | mm             | -              | mm             | mm                           | mm             | -                            | mm |
| 13             | 20                      | 26.6           | 5.4            | 13             | 16.5           | M6             | 5.3            | 4                            | 10             | M5                           | 3  |
| 16             | 25                      | 26.6           | 5.4            | 18             | 21             | M8             | 6.6            | 5                            | 11             | M6                           | 4  |
| 20             | 30                      | 34.1           | 7.4            | 22             | 25             | M10            | 8.4            | 6                            | 15             | M8                           | 5  |
| 25             | 35                      | 41.5           | 8.3            | 26             | 30             | M12            | 10.5           | 8                            | 18             | M10                          | 6  |
| 26             | 40                      | 46.2           | 9.3            | 26             | 4              | M12            | 10.5           | 8                            | 18             | M10                          | 6  |
| 32             | 50                      | 57.6           | 11.7           | 34             | 44             | M16            | 13.5           | 10                           | 20             | M12                          | 8  |
| 36             | 60                      | 62             | 10.6           | 43             | 49             | M20            | 17.5           | 12                           | 26             | M16                          | 10 |

### 8.2.5 Shaft support blocks with flange FW..-B




FW..-B

| Designation | m   | D<br>H8 | B   | L  | L <sub>1</sub> | D <sub>1</sub> | N <sub>1</sub><br>H13 | K <sub>5</sub> <sup>1)</sup> | J <sub>B</sub> | W  |
|-------------|-----|---------|-----|----|----------------|----------------|-----------------------|------------------------------|----------------|----|
|             |     |         |     |    |                |                |                       |                              |                |    |
| -           | kg  | mm      | mm  | mm | mm             | mm             | mm                    | -                            | mm             | mm |
| FW12-B      | 50  | 12      | 40  | 20 | 12             | 23.5           | 5.5                   | M5                           | 30             | 3  |
| FW16-B      | 80  | 16      | 50  | 20 | 12             | 27.5           | 5.5                   | M5                           | 35             | 3  |
| FW20-B      | 100 | 20      | 50  | 23 | 14             | 33.5           | 6.6                   | M6                           | 38             | 4  |
| FW25-B      | 160 | 25      | 60  | 25 | 16             | 42             | 6.6                   | M6                           | 42             | 5  |
| FW30-B      | 260 | 30      | 70  | 30 | 19             | 49.5           | 9                     | M8                           | 54             | 6  |
| FW40-B      | 700 | 40      | 100 | 40 | 26             | 65             | 11                    | M10                          | 68             | 8  |
| FW50-B      | 900 | 50      | 100 | 50 | 36             | 75             | 11                    | M10                          | 75             | 8  |

<sup>1)</sup> For mounting screws ISO 4762-8.8. Secure the screws, especially if preload losses can occur.







## Linear Bearings

Linear ball bearings, linear ball bearing units, linear plain bearings, linear plain bearing units, shaft blocks, precision shafts and standard housings

Catalog



# Foreword

## Linear bearings

Linear ball bearings support high radial loads at low weight and enable linear guidance with unlimited travel distances. The bearings are available in closed design or in open design with a segment cutout for use with supported shafts. In certain series, the radial clearance can be adjusted, allowing for either clearance-free or preloaded guides. Depending on the application, the linear bearings are supplied either without seals or with contact seals on both sides.

Linear ball bearings convert rolling motion into linear motion. Similar to conventional ball bearings, the rolling elements enable virtually friction-free operation even under load. To achieve this, linear ball bearings feature a precision steel shaft (inner ring), multiple ball recirculations, and raceways that transmit the load into the housing. The ball recirculation system allows the linear bearing to travel along the precision shaft with an effectively unlimited stroke. To ensure reliable function over a long service life, all components of the linear guide must exhibit a high level of accuracy and be manufactured from hardened steel. A linear slide typically consists of 4 linear ball bearings or linear ball bearing units, 2 shafts, and 4 shaft blocks.

For applications where linear ball bearings are not suitable, interchangeable linear plain bearings are available for most sizes.

## Linear bearing units

In linear bearing units, the bearing is integrated into a rigid, high-strength housing. The housings are available in closed, open, slotted, tandem, and flanged designs. Thanks to their low overall mass, these units are particularly suitable for lightweight constructions that must withstand high loads, as well as for applications requiring high accelerations and running speeds. As they are manufactured in large quantities using series production, the complete units are generally much more economical than custom in-house designs.

## Economical modular system

Bearings and units are available in both compact and standard ranges. With the wide range of bearing sizes, linear bearing units, shafts, and shaft blocks, almost any application requirement can be met. The extensive combination possibilities within the product range make it easy to select the right linear guide solution to boost productivity. The highly standardized product range also ensures rapid implementation, as most components are available directly from stock.

# Contents

|                                                                                           |    |
|-------------------------------------------------------------------------------------------|----|
| Foreword .....                                                                            | 3  |
| 1 Technical principles .....                                                              | 8  |
| 1.1 Load rating and rating life.....                                                      | 8  |
| 1.1.1 Calculation concept for static safety factor.....                                   | 8  |
| 1.1.2 Calculation method for static safety factor.....                                    | 8  |
| 1.1.3 Calculation of the static safety factor .....                                       | 9  |
| 1.1.4 Required static load rating.....                                                    | 10 |
| 1.1.5 Basic rating life .....                                                             | 10 |
| 1.1.6 Calculation of the basic rating life.....                                           | 10 |
| 1.1.7 Service life .....                                                                  | 12 |
| 1.1.8 Determining the bearing load .....                                                  | 12 |
| 1.1.9 Influencing factors .....                                                           | 17 |
| 1.2 Rigidity .....                                                                        | 28 |
| 1.2.1 Rigidity of linear ball bearing guides .....                                        | 28 |
| 1.2.2 Elastic deformation of clearance-free linear ball bearings in the contact zone..... | 28 |
| 1.2.3 Shaft deflection and misalignment.....                                              | 29 |
| 1.3 Preload.....                                                                          | 33 |
| 1.3.1 Operating clearance .....                                                           | 33 |
| 1.4 Friction .....                                                                        | 35 |
| 1.5 Load carrying capacity.....                                                           | 36 |
| 1.5.1 Required minimum load .....                                                         | 36 |
| 1.5.2 Permissible maximum load .....                                                      | 36 |
| 1.6 Acceleration and speed .....                                                          | 36 |
| 1.7 Lubrication .....                                                                     | 36 |
| 1.7.1 Grease lubrication.....                                                             | 37 |
| 1.7.2 Delivery condition from the factory .....                                           | 38 |
| 1.7.3 Initial grease application.....                                                     | 39 |
| 1.7.4 Relubrication.....                                                                  | 39 |
| 1.8 Temperature range .....                                                               | 40 |
| 1.9 Tolerances .....                                                                      | 40 |
| 1.10 Design of bearing arrangements .....                                                 | 42 |
| 1.10.1 Use of linear bearings.....                                                        | 42 |
| 1.10.2 Housing design.....                                                                | 43 |
| 1.10.3 Bearing fixation .....                                                             | 44 |
| 1.10.4 Axial fixation .....                                                               | 47 |
| 1.10.5 Sealing .....                                                                      | 48 |
| 1.10.6 Requirements for precision shafts.....                                             | 50 |
| 1.10.7 Mounting surfaces and shaft alignment.....                                         | 51 |
| 1.11 Installation.....                                                                    | 51 |
| 1.11.1 Preparations .....                                                                 | 51 |
| 1.11.2 Installing linear ball bearings .....                                              | 52 |
| 1.11.3 Adjusting the operating clearance .....                                            | 52 |
| 1.12 Transport and storage .....                                                          | 53 |
| 1.13 Maintenance .....                                                                    | 53 |
| 1.13.1 Preventive maintenance.....                                                        | 53 |
| 2 Technical principles for linear plain bearings and units.....                           | 54 |
| 2.1 Load rating and rating life.....                                                      | 54 |

|       |                                                                                   |    |
|-------|-----------------------------------------------------------------------------------|----|
| 2.1.1 | Service life .....                                                                | 54 |
| 2.1.2 | Selecting linear plain bearings using the pv-diagram .....                        | 54 |
| 2.2   | Influence of shaft hardness .....                                                 | 55 |
| 2.3   | Friction .....                                                                    | 55 |
| 2.4   | Lubrication .....                                                                 | 56 |
| 2.5   | Temperature range .....                                                           | 56 |
| 2.6   | Tolerances .....                                                                  | 56 |
| 2.7   | Design of bearing arrangements .....                                              | 57 |
| 2.7.1 | Bearing fixation .....                                                            | 57 |
| 2.8   | Installation .....                                                                | 58 |
| 2.8.1 | Installation of linear plain bearings .....                                       | 58 |
| 3     | Linear ball bearings of the compact range .....                                   | 59 |
| 3.1   | Product design .....                                                              | 59 |
| 3.2   | Product tables .....                                                              | 60 |
| 3.2.1 | Explanations .....                                                                | 60 |
| 3.2.2 | Linear ball bearings LBBR .....                                                   | 62 |
| 4     | Linear ball bearing units of the compact range .....                              | 64 |
| 4.1   | Product design .....                                                              | 64 |
| 4.1.1 | Linear ball bearing units of the compact range .....                              | 65 |
| 4.1.2 | Tandem linear bearing units of the compact range .....                            | 66 |
| 4.2   | Product tables .....                                                              | 67 |
| 4.2.1 | Explanations .....                                                                | 67 |
| 4.2.2 | Linear bearing units LUHR .....                                                   | 68 |
| 4.2.3 | Linear bearing units LUJR .....                                                   | 70 |
| 4.2.4 | Tandem units LTBR .....                                                           | 72 |
| 5     | Linear ball bearings of the standard range .....                                  | 74 |
| 5.1   | Product design .....                                                              | 74 |
| 5.1.1 | Linear ball bearings of the standard range in closed design .....                 | 74 |
| 5.1.2 | Linear ball bearings of the standard range in open design .....                   | 76 |
| 5.2   | Product tables .....                                                              | 77 |
| 5.2.1 | Explanations .....                                                                | 77 |
| 5.2.2 | Linear ball bearings LBCR .....                                                   | 78 |
| 5.2.3 | Linear ball bearings LBCT .....                                                   | 80 |
| 6     | Linear ball bearing units of the standard range .....                             | 82 |
| 6.1   | Product design .....                                                              | 82 |
| 6.1.1 | Linear ball bearing units of the standard range in closed design .....            | 83 |
| 6.1.2 | Linear ball bearing units of the standard range with slotted housing .....        | 83 |
| 6.1.3 | Linear ball bearing units of the standard range with closed flanged housing ..... | 84 |
| 6.1.4 | Tandem linear bearing units of the standard range .....                           | 84 |
| 6.1.5 | Linear ball bearing units of the standard range in open design .....              | 85 |
| 6.2   | Product tables .....                                                              | 86 |
| 6.2.1 | Explanations .....                                                                | 86 |
| 6.2.2 | Linear bearing units LUCR .....                                                   | 88 |
| 6.2.3 | Linear bearing units LUCS .....                                                   | 90 |
| 6.2.4 | Flanged units LVCR .....                                                          | 92 |
| 6.2.5 | Tandem units LTCR .....                                                           | 94 |
| 6.2.6 | Linear bearing units LUCT .....                                                   | 96 |

---

|        |                                                                                   |     |
|--------|-----------------------------------------------------------------------------------|-----|
| 7      | Linear ball bearings of the standard range, self-aligning .....                   | 98  |
| 7.1    | Product design.....                                                               | 98  |
| 7.1.1  | Linear ball bearings of the standard range in closed design .....                 | 98  |
| 7.1.2  | Linear ball bearings of the standard range in open design .....                   | 99  |
| 7.2    | Product tables.....                                                               | 101 |
| 7.2.1  | Explanations.....                                                                 | 101 |
| 7.2.2  | Linear ball bearings LBCD .....                                                   | 102 |
| 7.2.3  | Linear ball bearings LBCF.....                                                    | 104 |
| 8      | Linear ball bearing units of the standard range, self-aligning .....              | 106 |
| 8.1    | Product design.....                                                               | 106 |
| 8.1.1  | Linear ball bearing units of the standard range in closed design .....            | 107 |
| 8.1.2  | Linear ball bearing units of the standard range with slotted housing .....        | 108 |
| 8.1.3  | Linear ball bearing units of the standard range with closed flanged housing ..... | 109 |
| 8.1.4  | Tandem linear bearing units of the standard range .....                           | 109 |
| 8.1.5  | Linear ball bearing units of the standard range in open design .....              | 110 |
| 8.1.6  | Tandem linear bearing units of the standard range in open design .....            | 111 |
| 8.2    | Product tables.....                                                               | 112 |
| 8.2.1  | Explanations.....                                                                 | 112 |
| 8.2.2  | Linear bearing units LUCD .....                                                   | 114 |
| 8.2.3  | Linear bearing units LUND.....                                                    | 116 |
| 8.2.4  | Linear bearing units LUCE.....                                                    | 118 |
| 8.2.5  | Linear bearing units LUNE .....                                                   | 120 |
| 8.2.6  | Flanged units LVCD .....                                                          | 122 |
| 8.2.7  | Tandem units LTCD .....                                                           | 124 |
| 8.2.8  | Linear bearing units LUCF.....                                                    | 126 |
| 8.2.9  | Linear bearing units LUNF .....                                                   | 128 |
| 8.2.10 | Tandem units LTCF.....                                                            | 130 |
| 9      | Linear plain bearings of the compact range.....                                   | 132 |
| 9.1    | Product design.....                                                               | 132 |
| 9.2    | Product tables.....                                                               | 133 |
| 9.2.1  | Explanations.....                                                                 | 133 |
| 9.2.2  | Linear plain bearing LPBR.....                                                    | 134 |
| 10     | Linear plain bearing units of the compact range.....                              | 136 |
| 10.1   | Product design.....                                                               | 136 |
| 10.1.1 | Linear plain bearing units of the compact range.....                              | 136 |
| 10.1.2 | Tandem plain bearing units of the compact range .....                             | 137 |
| 10.2   | Product tables.....                                                               | 137 |
| 10.2.1 | Explanations.....                                                                 | 137 |
| 10.2.2 | Plain bearing units LUHR PB.....                                                  | 138 |
| 10.2.3 | Plain bearing units LUJR PB.....                                                  | 140 |
| 10.2.4 | Tandem plain bearing units LTBR PB .....                                          | 142 |
| 11     | Linear plain bearings of the standard range .....                                 | 144 |
| 11.1   | Product design.....                                                               | 144 |
| 11.1.1 | Linear plain bearings in closed design .....                                      | 144 |
| 11.1.2 | Linear plain bearings in open design .....                                        | 145 |
| 11.2   | Product tables.....                                                               | 145 |
| 11.2.1 | Explanations.....                                                                 | 145 |
| 11.2.2 | Linear plain bearing LPAR .....                                                   | 146 |
| 11.2.3 | Linear plain bearing LPAT .....                                                   | 148 |

|        |                                                                                    |     |
|--------|------------------------------------------------------------------------------------|-----|
| 12     | Linear plain bearing units of the standard range .....                             | 150 |
| 12.1   | Product design .....                                                               | 150 |
| 12.1.1 | Linear plain bearing units of the standard range in closed design .....            | 150 |
| 12.1.2 | Linear plain bearing units of the standard range with closed flanged housing ..... | 151 |
| 12.1.3 | Tandem plain bearing units of the standard range .....                             | 151 |
| 12.1.4 | Linear plain bearing units of the standard range in open design .....              | 152 |
| 12.2   | Product tables .....                                                               | 153 |
| 12.2.1 | Explanations .....                                                                 | 153 |
| 12.2.2 | Plain bearing units LUCR PA .....                                                  | 154 |
| 12.2.3 | Flanged units LVCR PA .....                                                        | 156 |
| 12.2.4 | Tandem plain bearing units LTCR PA .....                                           | 158 |
| 12.2.5 | Plain bearing units LUCT PA .....                                                  | 160 |
| 13     | Shaft blocks and shaft supports .....                                              | 162 |
| 13.1   | Product design .....                                                               | 162 |
| 13.1.1 | Shaft blocks made of die-cast aluminum .....                                       | 162 |
| 13.1.2 | Shaft blocks made of aluminum .....                                                | 162 |
| 13.1.3 | Shaft support .....                                                                | 163 |
| 13.2   | Product tables .....                                                               | 165 |
| 13.2.1 | Explanations .....                                                                 | 165 |
| 13.2.2 | Shaft blocks LSCS .....                                                            | 166 |
| 13.2.3 | Shaft blocks LSHS of the compact range .....                                       | 168 |
| 13.2.4 | Shaft blocks LSNS .....                                                            | 170 |
| 13.2.5 | Shaft supports LRCB .....                                                          | 172 |
| 13.2.6 | Shaft supports LRCC .....                                                          | 174 |
| 14     | Precision steel shafts .....                                                       | 176 |
| 14.1   | Product design .....                                                               | 176 |
| 14.1.1 | Shaft hardness and hardness depth .....                                            | 176 |
| 14.1.2 | Corrosion resistance of shafts and corrosion protection .....                      | 177 |
| 14.1.3 | Tolerances of precision steel shafts .....                                         | 177 |
| 14.1.4 | Machined precision steel shafts .....                                              | 178 |
| 14.1.5 | Jointed precision shafts .....                                                     | 180 |
| 14.2   | Product tables .....                                                               | 181 |
| 14.2.1 | Explanations .....                                                                 | 181 |
| 14.2.2 | Precision steel shafts LJM .....                                                   | 182 |
| 14.2.3 | Precision steel shafts LJMR .....                                                  | 184 |
| 14.2.4 | Precision steel shafts LJMS .....                                                  | 186 |
| 14.2.5 | Precision steel shafts LJMH .....                                                  | 188 |
| 14.2.6 | Precision steel shafts LJT .....                                                   | 190 |
| 15     | Standard housings .....                                                            | 192 |
| 15.1   | Product design .....                                                               | 192 |
| 15.1.1 | Closed housings .....                                                              | 192 |
| 15.1.2 | Slotted housings .....                                                             | 192 |
| 15.1.3 | Open housings .....                                                                | 192 |
| 15.2   | Product tables .....                                                               | 193 |
| 15.2.1 | Explanations .....                                                                 | 193 |
| 15.2.2 | Linear bearing housings LHCR .....                                                 | 194 |
| 15.2.3 | Linear bearing housings LHCS .....                                                 | 196 |
| 15.2.4 | Linear bearing housings LHCT .....                                                 | 198 |
| 16     | Structure of the ordering key .....                                                | 200 |

# 1 Technical principles

## 1.1 Load rating and rating life

To determine which size of linear guide is best suited for a given application, the following calculation methods must be applied:

- calculation of the basic rating life
- calculation of the static safety factor

In both calculation methods, all loads and forces acting on the linear guide system must be taken into account. As a result, representative load values are used to describe the whole load case. These represent a combination of all forces, lever arms, and torque loads, which may vary in terms of duration or stroke length.

The rating life of a linear guide with rolling elements is defined as the travel distance the guide can achieve before the first signs of material fatigue appear on one of the raceways or rolling elements. When selecting a linear guide based on the calculation of the basic rating life, the dynamic load rating  $C$  is used. This value indicates the load at which a basic rating life of 100 km of travel distance is achieved.

### 1.1.1 Calculation concept for static safety factor

When selecting a linear guide, the static safety factor must be calculated if any of the following conditions apply:

- The linear guide is operated under load at very low speeds.
- The linear guide works under normal operating conditions but must withstand high shock loads.
- The linear guide remains under load when at a standstill for extended periods.
- The linear guide is subjected to a load  $P > 50\%$  of the dynamic load rating  $C$ , such that the theoretical basis for calculating the basic rating life is no longer valid.

In all of these cases, the permissible load is determined not by material fatigue, but by the need to prevent plastic deformation of the rolling elements or raceways. Loads occurring at standstill or at very low operating speeds, as well as high shock-loads, can cause flattening of the rolling elements and subsequent damage to the shaft or linear ball bearing. Such damage may vary in depth or appear along the raceway at intervals corresponding to the pitch of the rolling elements. Permanent deformation leads to vibration within the linear bearing, increased running noise, and higher friction. It may also result in a reduction of preload and, in more advanced stages, an increase in bearing clearance. If operation continues under these conditions, the resulting peak loads caused by the permanent deformation can serve as initiation points for fatigue damage. The extent of damage depends on the specific application.

### 1.1.2 Calculation method for static safety factor

When designing a linear guide based on the static load rating, the static safety factor  $s_0$ , expressed as the ratio of the static load rating  $C_0$  to the maximum static bearing load  $P_0$ , must be taken into account. The static safety factor  $s_0$  indicates the degree of safety against permanent plastic deformation of the rolling elements and raceways. The static load rating  $C_0$  is defined as the static load

that produces a total permanent deformation equal to 0.0001 times the rolling element diameter. Depending on the contact conditions, a maximum Hertzian pressure of 5300 MPa at the most heavily loaded contact point is permissible in accordance with ISO 14728-2, without impairing running behavior.

### 1.1.3 Calculation of the static safety factor

For a selected linear guide and a defined load case, the static safety factor  $s_0$  can be calculated as follows.

When the maximum load occurs at standstill:

f1

$$s_0 = \frac{C_{0, \text{eff slide}}}{P_0}$$

When the maximum load occurs during operation:

f2

$$s_0 = \frac{C_{0, \text{eff slide}}}{F_{\text{res max}}}$$

|                  |   |                                |
|------------------|---|--------------------------------|
| $C_0$            | N | Basic static load rating       |
| $P_0$            | N | Equivalent static bearing load |
| $P_{\text{max}}$ | N | maximum equivalent load        |
| $s_0$            | - | static safety factor           |

Depending on the operating conditions, the following reference values are recommended for the static safety factor  $s_0$ .

#### 1 Static safety factor $s_0$

| Ambient conditions               | $s_0$     |
|----------------------------------|-----------|
| Normal conditions                | > 1 ... 2 |
| Smooth, vibration-free operation | > 2 ... 4 |
| Moderate vibration               | > 3 ... 5 |
| High vibration or shock loads    | > 5       |

For overhead installations, the general technical regulations and standards applicable to the respective industry must be taken into account. If an application involves a high risk of injury, the user must implement appropriate design measures and safety precautions to prevent components from becoming detached (e.g., due to rolling elements falling out or faulty screw connections).

If the linear guide system is exposed to external vibrations, such as those transmitted by nearby machinery, higher safety factors should be taken into account. Particular attention must also be paid to the load transmission paths between the guide and the adjacent construction when designing the system.



Check all screw connections for adequate safety. For overhead installations of linear guides, use higher values for the safety factor.



Always observe the general technical regulations and standards applicable to the respective industry.

### 1.1.4 Required static load rating

For specific operating conditions with a corresponding recommended safety factor value and a defined load case, the required static load rating  $C_0$  can be calculated using the following formulas.

When the maximum load occurs at standstill:

$\text{f}3$

$$C_{0, \text{eff slide}} = s_0 \cdot P_0$$

When the maximum load occurs during operation:

$\text{f}4$

$$C_0 = s_0 \cdot P_{\max}$$

|            |   |                                |
|------------|---|--------------------------------|
| $C_0$      | N | Basic static load rating       |
| $P_0$      | N | Equivalent static bearing load |
| $P_{\max}$ | N | maximum equivalent load        |
| $s_0$      | - | static safety factor           |

### 1.1.5 Basic rating life

Both under laboratory conditions and in practice, it has been observed that the basic rating life of bearings that appear identical and run under completely identical operating conditions can vary from one bearing to another. For this reason, calculation of the required bearing size necessitates a precise definition of the term rating life.

All specifications for the dynamic load rating of linear bearings are based, in accordance with ISO 14728-1, on a basic rating life that 90 % of a sufficiently large number of apparently identical bearings can achieve or exceed. The majority of bearings achieve a longer rating life, and half of all bearings reach at least 5 times the basic rating life.

### 1.1.6 Calculation of the basic rating life

The basic rating life  $L_{ns}$  of a linear guide, given in km, can be calculated using the following formula:

$\text{f}5$

$$L_{ns} = 100 \cdot \left( \frac{C}{P} \right)^p$$

If the travel distance and stroke frequency remain constant, it is often more practical to calculate the basic rating life  $L_{nh}$  in operating hours. This value can be determined using the following formula:

$\text{f}6$

$$L_{nh} = \frac{5 \cdot 10^7}{s_{\sin} \cdot n \cdot 60} \cdot \left( \frac{C}{P} \right)^p$$



The concept for calculating the basic rating life is only applicable if the equivalent dynamic load  $P$  does not exceed 50 % of the dynamic load rating  $C$ .

! The more accurately the expected loads and operating conditions are known or can be determined, the more precise and reliable the calculated rating life of the linear guides will be.

! The rating life calculation is related to the physical effect of material fatigue. Fatigue is the result of cyclic shear stresses occurring directly beneath the load-bearing surface. Over time, these stresses can cause cracks that gradually propagate toward the surface. When the rolling elements pass over these cracks, spalling or flaking of the material may occur. These surface defects then intensify progressively and ultimately lead to bearing failure.

Various characteristics of the components used also influence the rating life of linear ball bearings. To take account of these effects, the equation for calculating bearing rating life is extended by 7 coefficients ►17|1.1.9.

►7

$$L_{ns} = 100 \cdot c_1 \cdot c_2 \cdot f_s \cdot \left( \frac{f_i \cdot f_h \cdot f_l \cdot f_m \cdot C}{F} \right)^3$$

|                                                                                                                                     |                   |                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------|
| C                                                                                                                                   | N                 | Basic dynamic load rating                               |
| $C_0$                                                                                                                               | N                 | Basic static load rating                                |
| $c_1$                                                                                                                               | -                 | Coefficient for reliability                             |
| $c_2$                                                                                                                               | -                 | Coefficient for operating conditions                    |
| F                                                                                                                                   | N                 | Bearing load                                            |
| $f_h$                                                                                                                               | -                 | Coefficient for shaft hardness                          |
| $f_i$                                                                                                                               | -                 | Coefficient for the number of loaded bearings per shaft |
| $f_l$                                                                                                                               | -                 | Coefficient for load direction                          |
| $f_m$                                                                                                                               | -                 | Coefficient for misalignment                            |
| $f_s$                                                                                                                               | -                 | Coefficient for stroke length                           |
| $L_{nh}$                                                                                                                            | h                 | Basic rating life                                       |
| $L_{ns}$                                                                                                                            | km                | Basic rating life                                       |
| n                                                                                                                                   | $\text{min}^{-1}$ | Stroke frequency                                        |
| P                                                                                                                                   | N                 | Equivalent dynamic load                                 |
| p                                                                                                                                   | -                 | Life exponent                                           |
| <ul style="list-style-type: none"> <li>• Roller bearing <math>p = 10/3</math></li> <li>• Ball bearing <math>p = 3</math></li> </ul> |                   |                                                         |
| $S_{\text{sin}}$                                                                                                                    | mm                | Single stroke length                                    |

Some parameters are determined once during the design of a linear guide. The corresponding coefficients therefore remain constant throughout the calculation. These are:

- number of bearings (coefficient  $f_i$ ) ►20|1.1.9.3
- shaft hardness (coefficient  $f_h$ ) ►22|1.1.9.5
- reliability (coefficient  $c_1$ ) ►17|1.1.9.1
- operating conditions (coefficient  $c_2$ ) ►18|1.1.9.2

Other characteristics may vary from one load phase to another:

- the applied load
- stroke length (coefficient  $f_s$ ) ►22|1.1.9.4
- load direction (coefficient  $f_l$ ) ►24|1.1.9.7
- misalignment between shaft and linear bearing (coefficient  $f_m$ ) ►23|1.1.9.6

### 1.1.7 Service life

In addition to the term rating life, the term service life is also used. This refers to the period during which a linear guide remains functional in a specific application.

The service life of a bearing therefore does not necessarily depend on fatigue alone, but also on the following factors:

- wear
- corrosion
- seal failure
- lubrication interval (grease life)
- vibrations at standstill

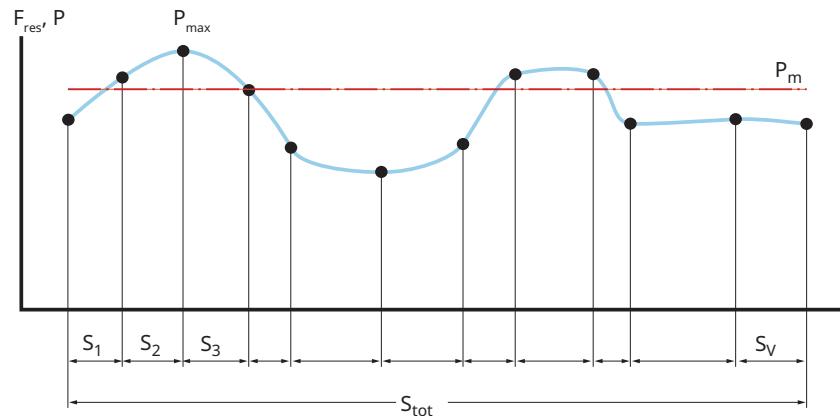
The service life can generally only be determined through practical testing or by comparison with similar applications.

### 1.1.8 Determining the bearing load

The load can be inserted directly into the rating life equations and into the equation for calculating the static load rating if the load  $F$  acting on the linear bearing is constant in magnitude, position, and direction, and acts perpendicular to the center of the raceway. In all other cases, the maximum resulting load  $P_{\max}$  and the equivalent dynamic mean load  $P_m$  must first be calculated. These representative loads are defined as those that have the same effect on the rating life and on the static safety factor  $s_0$  as the combined influence of all actual load cases.

#### 1.1.8.1 Equivalent dynamic mean load

The formulas used to calculate the basic rating life are based on the assumption that both load and running speed remain constant. Under real operating conditions, however, the external loads, travel positions, and running speeds generally vary. The working cycle should therefore be divided into load phases with constant or nearly constant conditions during the individual strokes. Taken together, these individual load phases, depending on their respective stroke lengths, determine the equivalent dynamic mean load  $P_m$ .


J 8

$$P_m = p \sqrt{\frac{\sum_{j=1}^v |P_j^p| \cdot S_j}{S_{\text{tot}}}}$$

J 9

$$S_{\text{tot}} = S_1 + S_2 + S_3 + \dots + S_j + \dots + S_v$$

⊕ 1 Variable load of a linear bearing



001B6B29

The equivalent dynamic load  $P$  is calculated from the combined bearing load, adjusted by the coefficients for load direction and misalignment.

ƒ 10

$$P_j = \frac{F_{\text{comb},j}}{f_{l,j} \cdot f_{m,j}}$$

|                     |    |                                                                                                                                                   |
|---------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------|
| $F_{\text{comb},j}$ | N  | Combined bearing load during a specific load phase                                                                                                |
| $f_{l,j}$           | -  | Coefficient for load direction during a specific load phase                                                                                       |
| $f_{m,j}$           | -  | Coefficient for misalignment during a specific load phase                                                                                         |
| $j$                 | -  | Index for load phases                                                                                                                             |
| $P_j$               | N  | Equivalent dynamic load during a specific load phase                                                                                              |
| $P_m$               | N  | Equivalent dynamic mean load                                                                                                                      |
| $p$                 | -  | Life exponent <ul style="list-style-type: none"> <li>• Roller bearing <math>p = 10/3</math></li> <li>• Ball bearing <math>p = 3</math></li> </ul> |
| $S_j$               | mm | Individual stroke length of a specific load phase                                                                                                 |
| $S_{\text{tot}}$    | mm | Total stroke length                                                                                                                               |
| $V$                 | -  | Number of load phases                                                                                                                             |

#### 1.1.8.2 Maximum equivalent load

If the maximum load occurs during the movement of the linear guide, the maximum value of  $P$  must be used for calculating the static safety factor  $s_0$ . To determine this, all loads must first be calculated for the individual stroke lengths. These values can then be used to determine the maximum equivalent load  $P_{\text{max}}$ .

The maximum static load  $P_0$ , which occurs when the linear guide is at a standstill, is calculated using the same formula. The maximum values  $P_0$  and  $P_{\text{max}}$  are then inserted into the equation for calculating the static safety factor  $s_0$ .

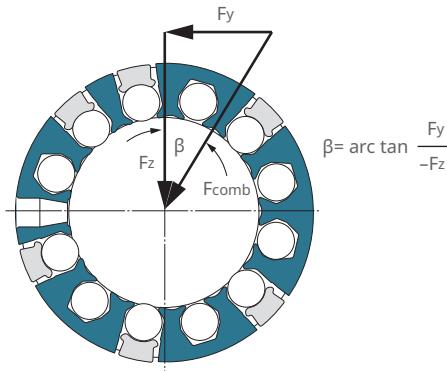
ƒ 11

$$P_{\text{max}} = \frac{1}{f_{h,0}} \cdot \max_{j=1 \rightarrow V} \left| \frac{F_{\text{comb},j}}{f_{l,0,j} \cdot f_{m,j}} \right|$$

|                     |   |                                                                    |
|---------------------|---|--------------------------------------------------------------------|
| $F_{\text{comb},j}$ | N | Combined bearing load during a specific load phase                 |
| $f_{h,0}$           | - | Static coefficient for shaft hardness                              |
| $f_{l,0,j}$         | - | Static coefficient for load direction during a specific load phase |
| $f_{m,j}$           | - | Coefficient for misalignment during a specific load phase          |
| $j$                 | - | Index for load phases                                              |
| $P_{\text{max}}$    | N | maximum equivalent load                                            |
| $P_0$               | N | Maximum static load                                                |
| $V$                 | - | Number of load phases                                              |

### 1.1.8.3 Combined bearing load

For linear ball bearings, the combined bearing load is composed of the load vectors at bearing point  $F_y$  and  $F_z$ . The absolute value of the combined bearing load is calculated from  $F_y$  and  $F_z$ .


 12

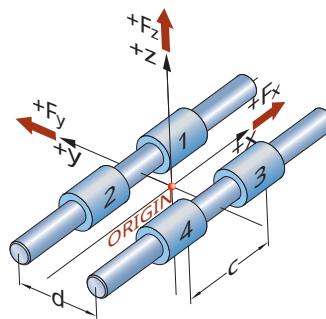
$$F_{\text{comb}} = \sqrt{F_y^2 + F_z^2}$$

The direction of the combined bearing load, expressed as the angle  $\beta$  relative to the z-axis of the coordinate system, can be determined using the inverse tangent function.

|                   |   |                             |
|-------------------|---|-----------------------------|
| $F_{\text{comb}}$ | N | Combined bearing load       |
| $F_y$             | N | Bearing load in y-direction |
| $F_z$             | N | Bearing load in z-direction |

 2 Angle  $\beta$




001B7318

### 1.1.8.4 Conversion of external forces into loads at the bearing point

Various formulas can be used to determine the loads acting on the linear bearings.

## System with 2 shafts and 4 linear bearings:

□ 3 Loads in a system with 2 shafts and 4 linear bearings



001B7136

|   |           |   |           |
|---|-----------|---|-----------|
| 1 | Bearing 1 | 2 | Bearing 2 |
| 3 | Bearing 3 | 4 | Bearing 4 |

Load at the bearing point: force in y-direction

f 13

$$F_{y1} = F_{y3} = \frac{\sum_{i=1}^u (F_{y,i} \cdot y_i)}{4} - \frac{\sum_{i=1}^u (F_{x,i} \cdot y_i)}{2 \cdot c}$$

f 14

$$F_{y2} = F_{y4} = \frac{\sum_{i=1}^u (F_{y,i} \cdot y_i)}{4} + \frac{\sum_{i=1}^u (F_{x,i} \cdot y_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{y,i} \cdot x_i)}{2 \cdot c}$$

Load at the bearing point: force in z-direction

f 15

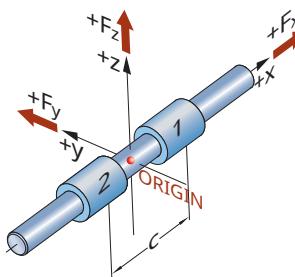
$$F_{z1} = \frac{\sum_{i=1}^u (F_{z,i} \cdot z_i)}{4} - \frac{\sum_{i=1}^u (F_{x,i} \cdot z_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{y,i} \cdot z_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{z,i} \cdot y_i)}{2 \cdot d}$$

f 16

$$F_{z2} = \frac{\sum_{i=1}^u (F_{z,i} \cdot z_i)}{4} + \frac{\sum_{i=1}^u (F_{x,i} \cdot z_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{z,i} \cdot x_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{y,i} \cdot z_i)}{2 \cdot d} - \frac{\sum_{i=1}^u (F_{z,i} \cdot y_i)}{2 \cdot d}$$

f 17

$$F_{z3} = \frac{\sum_{i=1}^u (F_{z,i} \cdot z_i)}{4} - \frac{\sum_{i=1}^u (F_{x,i} \cdot z_i)}{2 \cdot c} - \frac{\sum_{i=1}^u (F_{z,i} \cdot x_i)}{2 \cdot c} + \frac{\sum_{i=1}^u (F_{y,i} \cdot z_i)}{2 \cdot d} - \frac{\sum_{i=1}^u (F_{z,i} \cdot y_i)}{2 \cdot d}$$


f18

$$F_{z4} = \frac{\sum_{i=1}^U F_{z,i}}{4} + \frac{\sum_{i=1}^U (F_{x,i} \cdot z_i) - \sum_{i=1}^U (F_{z,i} \cdot x_i)}{2 \cdot c} + \frac{\sum_{i=1}^U (F_{y,i} \cdot z_i) - \sum_{i=1}^U (F_{z,i} \cdot y_i)}{2 \cdot d}$$

|                             |    |                                                         |
|-----------------------------|----|---------------------------------------------------------|
| $F_{x,i}, F_{y,i}, F_{z,i}$ | N  | External loads in x-direction, y-direction, z-direction |
| $F_{yn}$                    | N  | Bearing load in y-direction at bearing n                |
| $F_{zn}$                    | N  | Bearing load in z-direction at bearing n                |
| i                           | -  | Index for external loads                                |
| U                           | -  | Number of simultaneously acting loads                   |
| $x_i, y_i, z_i$             | mm | Lever arms for external loads                           |

System with 1 shaft and 2 linear bearings:

Q4 Loads in a system with 1 shaft and 2 linear bearings



001B7134

1 Bearing 1

2 Bearing 2

Load at the bearing point: force in y-direction

f19

$$F_{y1} = \frac{\sum_{i=1}^U F_{y,i}}{2} + \frac{\sum_{i=1}^U (F_{x,i} \cdot y_i) - \sum_{i=1}^U (F_{y,i} \cdot x_i)}{c}$$

f20

$$F_{y2} = \frac{\sum_{i=1}^U F_{y,i}}{2} + \frac{\sum_{i=1}^U (F_{x,i} \cdot y_i) - \sum_{i=1}^U (F_{y,i} \cdot x_i)}{c}$$

Load at the bearing point: force in z-direction

f21

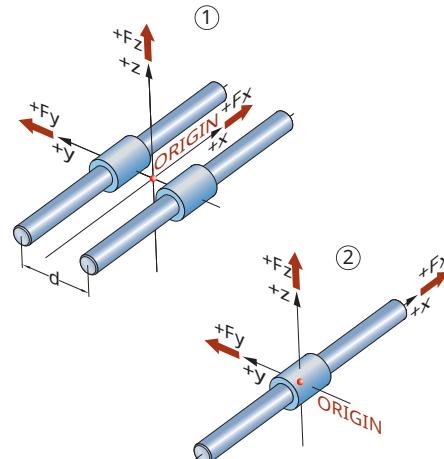
$$F_{z1} = \frac{\sum_{i=1}^U F_{z,i}}{2} - \frac{\sum_{i=1}^U (F_{x,i} \cdot z_i) - \sum_{i=1}^U (F_{z,i} \cdot x_i)}{c}$$

f122

$$F_{z2} = \frac{\sum_{i=1}^U F_{z,i}}{2} + \frac{\sum_{i=1}^U (F_{x,i} \cdot z_i) - \sum_{i=1}^U (F_{z,i} \cdot x_i)}{c}$$

Load at the bearing point: Moment about the x-axis

f123


$$M_{x1} = M_{x2} = \frac{-\sum_{i=1}^U (F_{y,i} \cdot z_i) + \sum_{i=1}^U (F_{z,i} \cdot y_i)}{2}$$

|                                   |     |                                                         |
|-----------------------------------|-----|---------------------------------------------------------|
| $F_{x,i}$ , $F_{y,i}$ , $F_{z,i}$ | N   | External loads in x-direction, y-direction, z-direction |
| $F_{yn}$                          | N   | Bearing load in y-direction at bearing n                |
| $F_{zn}$                          | N   | Bearing load in z-direction at bearing n                |
| i                                 | -   | Index for external loads                                |
| $M_{xn}$                          | Nmm | Torque load about the x-axis at bearing n               |
| U                                 | -   | Number of simultaneously acting loads                   |
| $x_i, y_i, z_i$                   | mm  | Lever arms for external loads                           |

! Since linear ball bearings cannot support loads about the x-axis, a system with 1 shaft and 2 bearings can only be realized if  $M_x = 0$ , either as a result of the external loads themselves or through additional measures.

! Linear ball bearings are sensitive to edge stresses and therefore cannot support torque loads  $M_y$  and  $M_z$ .

Q5 Less suitable systems (2 shafts and 2 bearings, 1 shaft and 1 bearing)



001B712E

1 2 shafts and 2 bearings

2 1 shaft and 1 bearing

## 1.1.9 Influencing factors

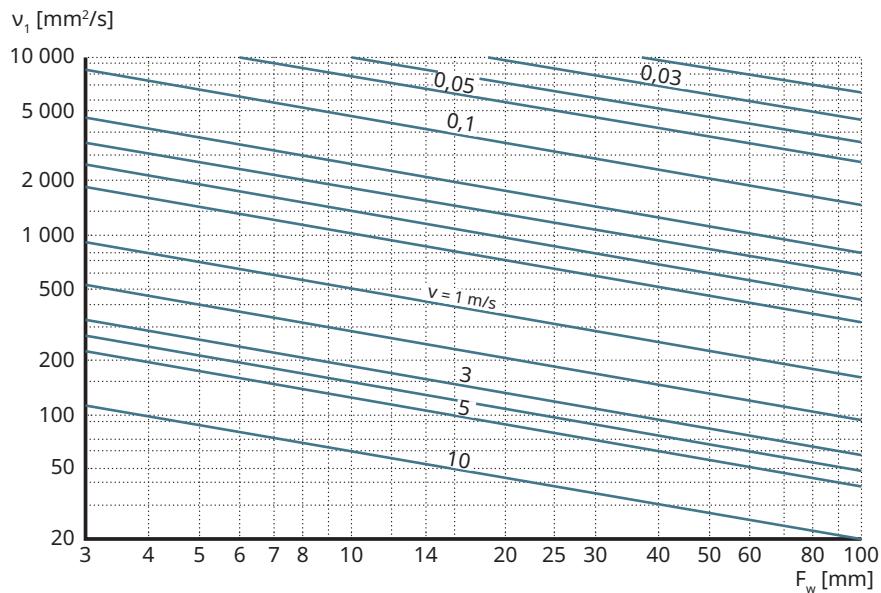
### 1.1.9.1 Reliability, coefficient $c_1$

The coefficient  $c_1$  is used in rating life calculations in cases where the intended prediction of reliability has to exceed 90 %.

## 2 Coefficient $c_1$ for reliability

| Reliability % | L         | $c_1$ |
|---------------|-----------|-------|
| 90            | $L_{10s}$ | 1     |
| 95            | $L_{5s}$  | 0.62  |
| 96            | $L_{4s}$  | 0.53  |
| 97            | $L_{3s}$  | 0.44  |
| 98            | $L_{2s}$  | 0.33  |
| 99            | $L_{1s}$  | 0.21  |

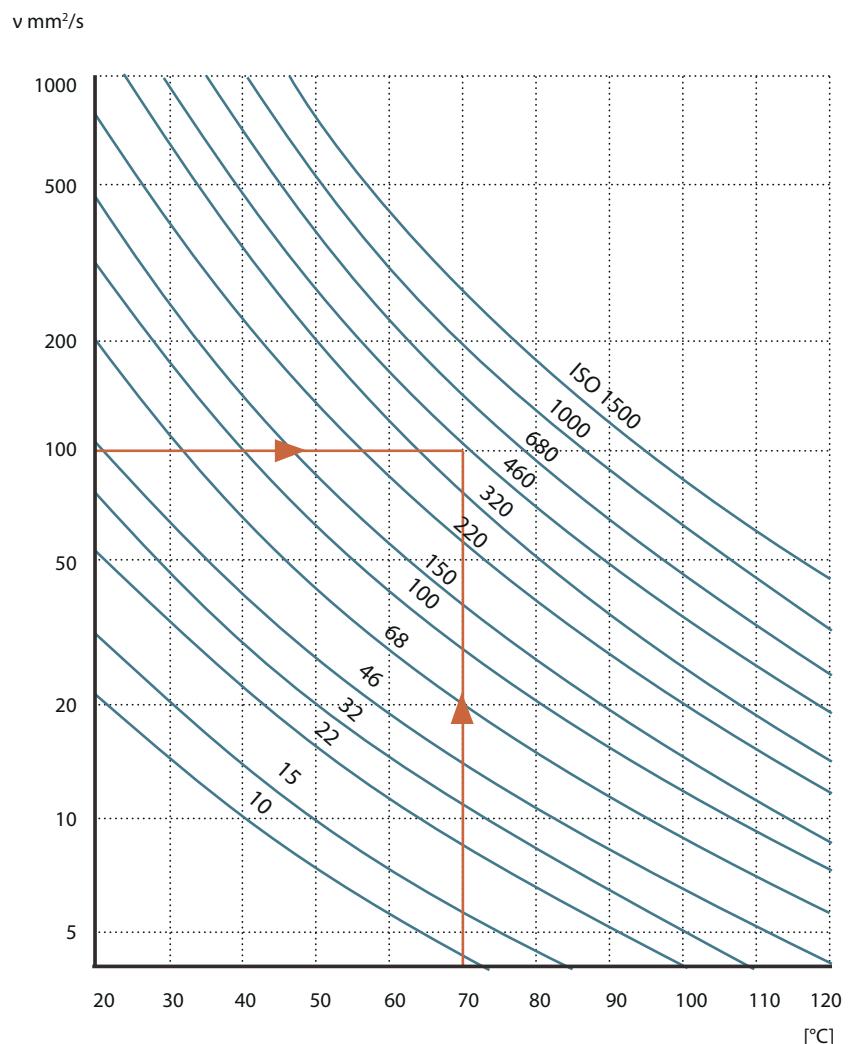
### 1.1.9.2 Operating conditions, coefficient $c_2$


The effectiveness of lubrication largely depends on the degree of surface separation at the contact points between the rolling elements and the raceways. The viscosity ratio  $\kappa$  serves as a measure of the quality of lubricant film formation. Assuming normal cleanliness of the shaft guide and effective sealing, the coefficient  $c_2$  depends solely on the viscosity ratio  $\kappa$ .

#### 24 Viscosity ratio

$$\kappa = \frac{v}{v_1}$$

|       |                    |                                                               |
|-------|--------------------|---------------------------------------------------------------|
| K     | -                  | Viscosity ratio                                               |
| v     | mm <sup>2</sup> /s | Kinematic viscosity of the lubricant at operating temperature |
| $v_1$ | mm <sup>2</sup> /s | Requisite viscosity of the lubricant at operating temperature |

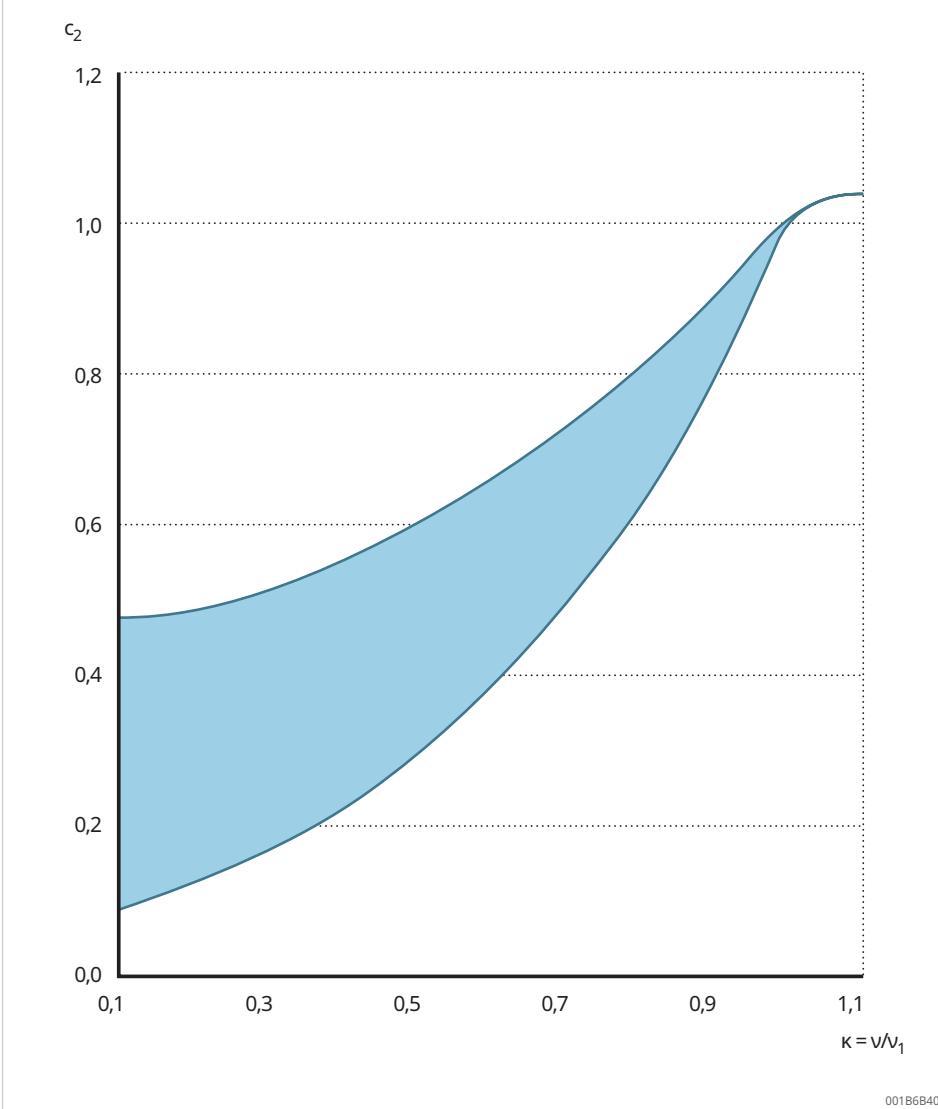

#### 6 Determining the requisite viscosity $v_1$ at operating temperature



001B6B44

The requisite viscosity  $v_1$  is determined using the shaft diameter  $F_w$  and the mean speed  $v$ . The diagram is valid for additive-free mineral oils and lubricating greases with mineral base oils and shows the requisite viscosity of the base oil at operating temperature.

7 Lubricant viscosity  $\nu$  as a function of temperature




001B6B3C

The diagram can be used to convert a kinematic viscosity at operating temperature to the corresponding viscosity at the international standard temperature of  $40^{\circ}\text{C}$ . Each individual curve represents a lubricant with a specific kinematic viscosity at  $40^{\circ}\text{C}$ .

For example, if the requisite viscosity is  $100 \text{ mm}^2/\text{s}$  and the operating temperature is  $70^{\circ}\text{C}$ , the corresponding kinematic viscosity at a temperature of  $40^{\circ}\text{C}$  is  $460 \text{ mm}^2/\text{s}$ . The red arrows in the diagram illustrate this example.

8 Coefficient  $c_2$  for the operating conditions



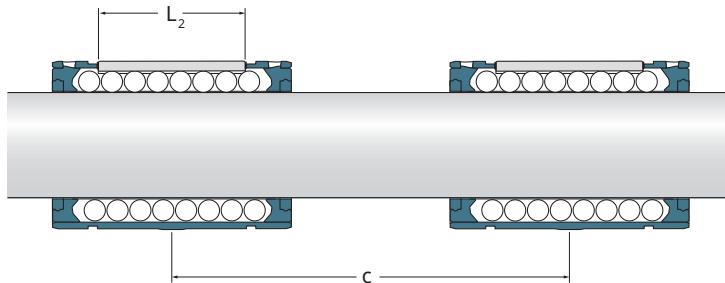
After determining the viscosity ratio  $\kappa$ , the value for  $c_2$  can be taken from the diagram. If  $\kappa$  is less than 1, it is recommended that a lubricant containing EP-additives (EP=Extreme Pressure) is used. If  $\kappa$  is less than 0.4, the use of EP-additives is essential. When a lubricant with EP-additives is used, the higher value for  $c_2$  from the diagram may be used for the calculation. Linear ball bearings are prelubricated with a grease containing EP-additives at the factory.



If a lubricant other than the standard grease is used, it must be ensured that this grease, and in particular the EP-additives it contains, is compatible with the materials used in the linear guide.

#### 1.1.9.3 Number of loaded bearings per shaft, coefficient $f_i$

In most linear ball bearing configurations, 2 or more bearings are mounted on one shaft.


The load distribution across the bearings is strongly influenced by the:

- distance between the bearings
- mounting accuracy
- manufacturing quality of the adjacent construction

The coefficient  $f_i$  accounts for these influences on bearing load, based on the number of bearings per shaft, their spacing, and the raceway length  $L_2$  of the linear ball bearings.

! This coefficient has no effect if the mounting bore for the bearings is produced with the same accuracy as that of an original Schaeffler housing.

■ 9 Coefficient  $f_i$  for the number of loaded bearings per shaft



001B6B48

■ 3 Coefficient  $f_i$  as a function of the number of bearings per shaft and the distance

| Number of bearings | $f_i$            |               |
|--------------------|------------------|---------------|
|                    | $c \geq 1.5 L_2$ | $c < 1.5 L_2$ |
| 1                  | 1                | 1             |
| 2                  | 1                | 0.81          |
| 3                  | 1                | 0.72          |

■ 4 Raceway lengths  $L_2$  of the various linear ball bearings

| Designation   |                                    | $L_2$ |
|---------------|------------------------------------|-------|
| Compact range | Standard range                     | mm    |
| LBBR 3        | -                                  | 4.1   |
| LBBR 4        | -                                  | 5.4   |
| LBBR 5        | -                                  | 7.1   |
| -             | LBCR 5                             | 11.3  |
| LBBR 6        | -                                  | 12    |
| LBBR 8        | -                                  | 12.7  |
| -             | LBCR 8                             | 12.5  |
| LBBR 10       | -                                  | 12.7  |
| LBBR 12       | -                                  | 15.4  |
| -             | LBCR 12, LBCT 12, LBCD 12, LBCF 12 | 18.4  |
| LBBR 14       | -                                  | 15.4  |
| LBBR 16       | -                                  | 15.4  |
| -             | LBCR 16, LBCT 16, LBCD 16, LBCF 16 | 21.2  |
| LBBR 20       | -                                  | 15.4  |
| -             | LBCR 20, LBCT 20, LBCD 20, LBCF 20 | 27.6  |
| LBBR 25       | -                                  | 22.4  |
| -             | LBCR 25, LBCT 25, LBCD 25, LBCF 25 | 37.2  |
| LBBR 30       | -                                  | 32    |
| -             | LBCR 30, LBCT 30, LBCD 30, LBCF 30 | 45.4  |
| LBBR 40       | -                                  | 38.6  |
| -             | LBCR 40, LBCD 40                   | 50.8  |
| -             | LBCT 40, LBCF 40                   | 54    |
| LBBR 50       | -                                  | 47.8  |

| Designation   |                                    | L <sub>2</sub> |
|---------------|------------------------------------|----------------|
| Compact range | Standard range                     | mm             |
| -             | LBCR 50, LBCT 50, LBCD 50, LBCF 50 | 68.5           |
| -             | LBCR 60, LBCT 60                   | 92             |
| -             | LBCR 80, LBCT 80                   | 122            |

#### 1.1.9.4 Influence of stroke length, coefficient f<sub>s</sub>

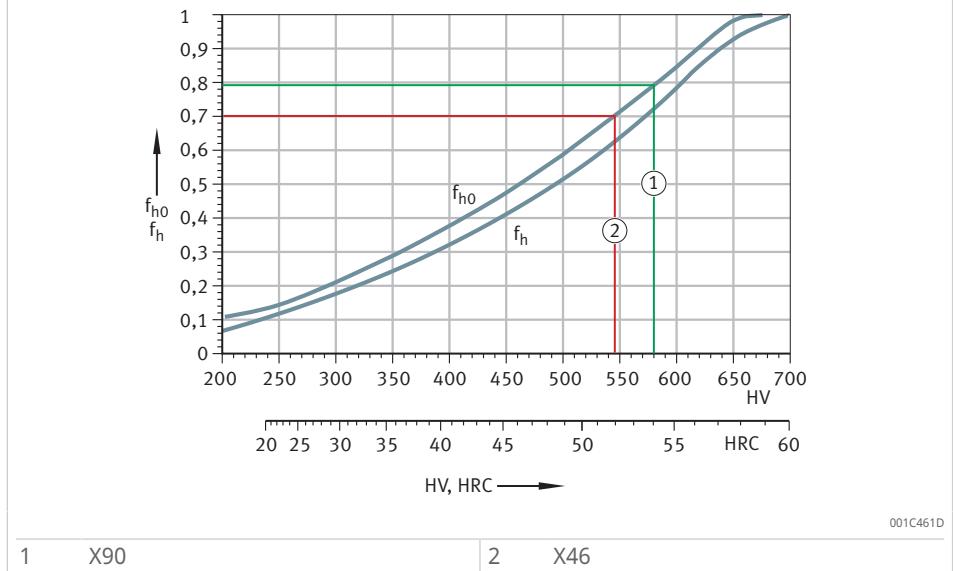
Strokes that are shorter than the raceway length of the linear ball bearing have a negative effect on the achievable rating life of a guide system. Starting from the ratio of the single stroke length S, or, in cases with several load phases in the same direction of motion, the sub stroke length S<sub>s</sub> to the raceway length L<sub>2</sub>, the coefficient f<sub>s</sub> is determined.

$f_s \approx 25$

$$S_s = \sum_{j=A}^B S_j$$

|                |    |                                                   |
|----------------|----|---------------------------------------------------|
| A              | -  | Starting point of movement in one direction       |
| B              | -  | Next reversal point                               |
| j              | -  | Index for load phases                             |
| S <sub>j</sub> | mm | Individual stroke length of a specific load phase |
| S <sub>s</sub> | mm | Sub stroke length                                 |

5 Coefficient f<sub>s</sub> as a function of the ratio of single stroke length S or sub stroke length S<sub>s</sub> and L<sub>2</sub>


| S/L <sub>2</sub><br>S <sub>s</sub> /L <sub>2</sub> | f <sub>s</sub> |
|----------------------------------------------------|----------------|
| 1.0                                                | 1.00           |
| 0.9                                                | 0.91           |
| 0.8                                                | 0.82           |
| 0.7                                                | 0.73           |
| 0.6                                                | 0.63           |
| 0.5                                                | 0.54           |
| 0.4                                                | 0.44           |
| 0.3                                                | 0.34           |
| 0.2                                                | 0.23           |

#### 1.1.9.5 Influence of shaft hardness, coefficients f<sub>h</sub> and f<sub>h,0</sub>

The full load rating of a linear ball bearing is achieved in conjunction with a shaft hardness of  $\geq 58$  HRC. For shafts with lower hardness, for example shafts made from corrosion-resistant steel, the coefficient f<sub>h,0</sub> reduces the static load rating C<sub>0</sub>, and the coefficient f<sub>h</sub> reduces the dynamic load rating C.

The load ratings of the linear ball bearings specified in the product tables apply to bearings made from both rolling bearing steel and corrosion-resistant steel. However, when corrosion-resistant shafts are used, the ratings must be reduced as described. If shafts with a hardness of  $< 44$  HRC (430 HV) are to be used, please consult Schaeffler.

10 Static and dynamic hardness coefficients for reduced raceway hardness



1.1.9.6 Influence of misalignment, coefficient  $f_m$

Loads acting on unsupported shafts cause deflection, which in turn results in misalignment between the shaft and the linear ball bearing under load ►29 | 1.2.3. The effects of misalignment on the calculations for the static safety factor and rating life, as a function of the bearing type and degree of misalignment, are shown in the following table. The degree of misalignment is given in angular minutes. Since the loads vary across individual load phases, the coefficient  $f_m$  is phase-dependent and is therefore applied in the denominator of the equations for calculating the static safety factor and rating life.

6 Coefficient  $f_m$  as a function of misalignment  $\alpha$

| Designation                        | $\alpha$             | $f_m$                                               | Static safety factor and rating life         |
|------------------------------------|----------------------|-----------------------------------------------------|----------------------------------------------|
| <b>Non-self-aligning bearings:</b> |                      |                                                     |                                              |
| LBBR,<br>LBCR,<br>LBCT             | $\alpha \leq \pm 5$  | 1                                                   | Full static safety factor and rating life    |
|                                    | $\alpha \leq \pm 15$ | $1.04 + \alpha \cdot (0.006 - 0.0028 \cdot \alpha)$ | Reduced static safety factor and rating life |
|                                    | $\pm 15 < \alpha$    | 0                                                   | Invalid value                                |
| <b>Self-aligning bearings:</b>     |                      |                                                     |                                              |
| LBCD,<br>LBCF                      | $\alpha \leq \pm 30$ | 1                                                   | Full static safety factor and rating life    |
|                                    | $\pm 30 < \alpha$    | 0                                                   | Invalid value                                |

11 Coefficient for misalignment



001B6B2A

1.1.9.7 Influence of load direction, coefficients  $f_l$ ,  $f_{l,0}$

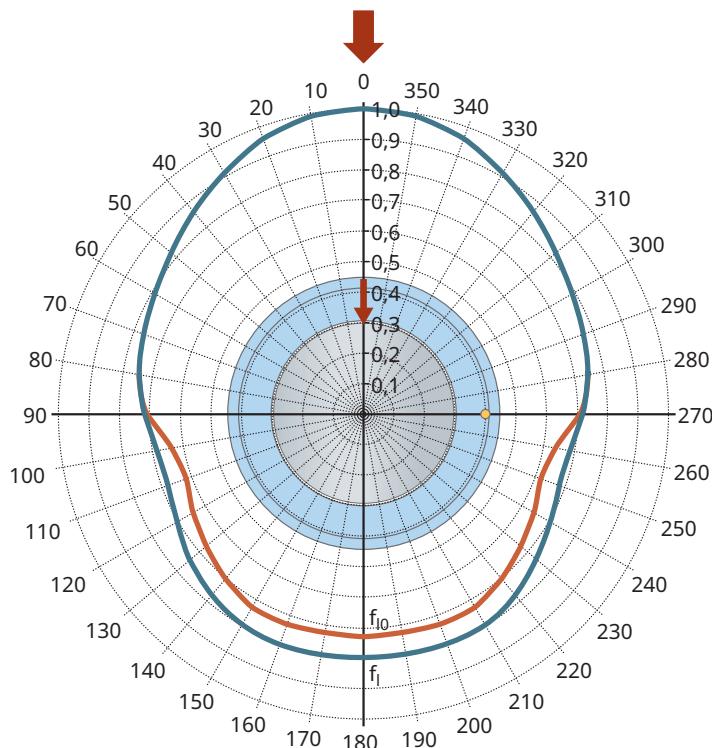
The static and dynamic load ratings vary around the central axis of a linear ball bearing.

Bearings of the compact range exhibit relatively small deviations between  $C_{0,min}$  and  $C_{0,max}$ , or  $C_{min}$  and  $C_{max}$ . The minimum and maximum values are distributed according to the arrangement of the raceway plates. Normally, the load direction for maximum load rating  $C_{0,max}$  and  $C_{max}$  is between the raceway plates. In contrast, for sizes 25, 30, and 40, the direction of the maximum dynamic load ratings is on the raceway plates.

12 Load direction for max. load rating of bearings from the compact range

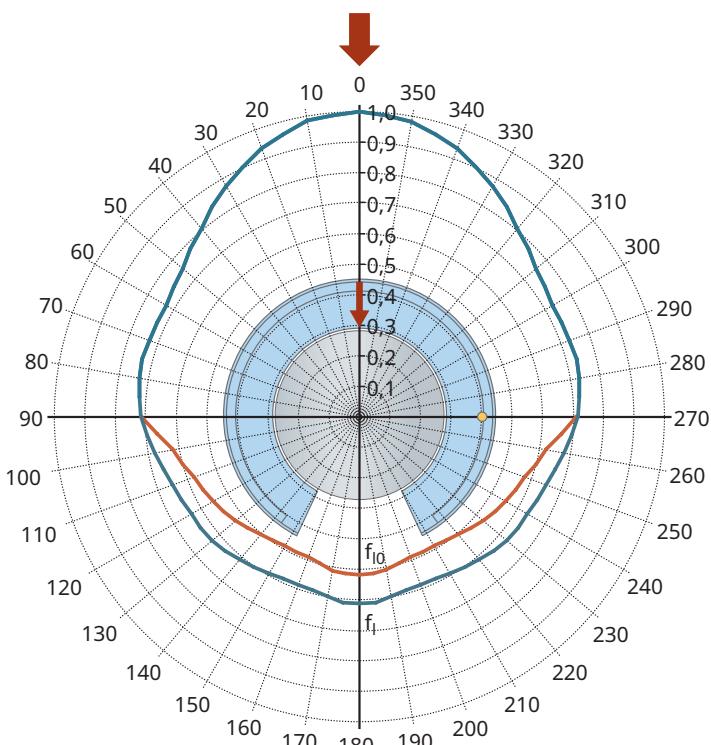


001C3F04


1 Between the raceway plates      2 On the raceway plates

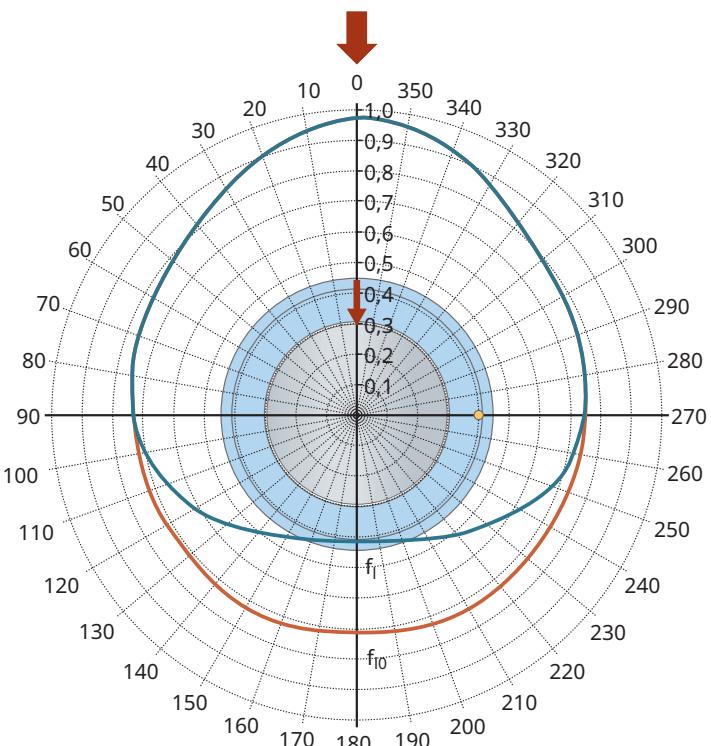
7 Load direction for max. load rating of bearings from the compact range

| Load direction             | $C_0$<br>stat.<br>max | $C$<br>dyn.<br>max   |
|----------------------------|-----------------------|----------------------|
| Between the raceway plates | All sizes             | Sizes 3 to 20 and 50 |
| On the raceway plates      | -                     | Sizes 25, 30, 40     |


Bearings of the standard range feature a concentration of raceway plates and therefore have a specific load direction for maximum load rating which is indicated by an arrow (D-design) or hatching (A-design) on the end face of the linear ball bearing. The difference between  $C_{0,\min}$  and  $C_{0,\max}$ , and between  $C_{\min}$  and  $C_{\max}$ , is considerable. The influence of load angle on load rating, expressed by the coefficients  $f_l$  and  $f_{l0}$ , is shown in the diagrams ►25|⊕13 to ►27|⊕16.

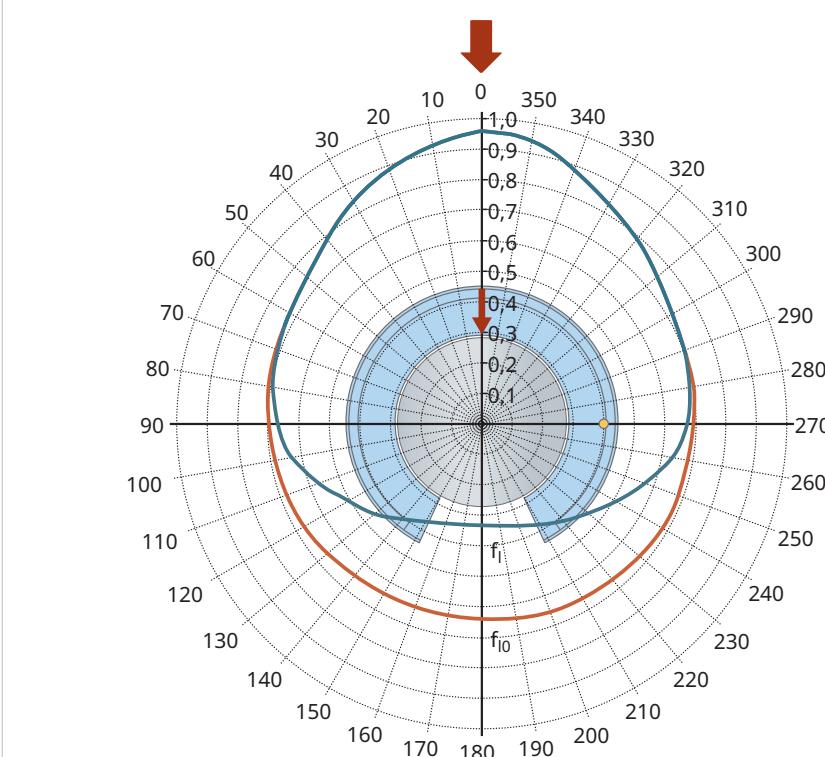
⊕13 Coefficients for LBCR and LBCD, D-design




001B6B2B

14 Coefficients for LBCT and LBCF, D-design




001B6B2F

15 Coefficients for LBCR and LBCD, A-design



001B6B32

16 Coefficients for LBCT and LBCF, A-design



001B6B35

The varying load ratings of linear ball bearings around their central axis must be taken into account when designing and selecting linear guides.

To assist in the decision-making process, the various orientation options for linear ball bearings are illustrated.

#### Defined orientation

Advantage:

- enables alignment of main load direction and maximum load ratings
- allows full load rating of the linear ball bearing to be utilized

Compromise:

- slightly more effort required during series assembly

#### Random orientation

Advantage:

- slightly less effort required during series assembly

Compromise:

- only the values  $C_{0,\min}$  and  $C_{\min}$  can be used in bearing design calculations, as there is no way of guaranteeing that the direction of maximum load rating coincides with the main load direction
- only the minimum load rating can be assumed in practical application

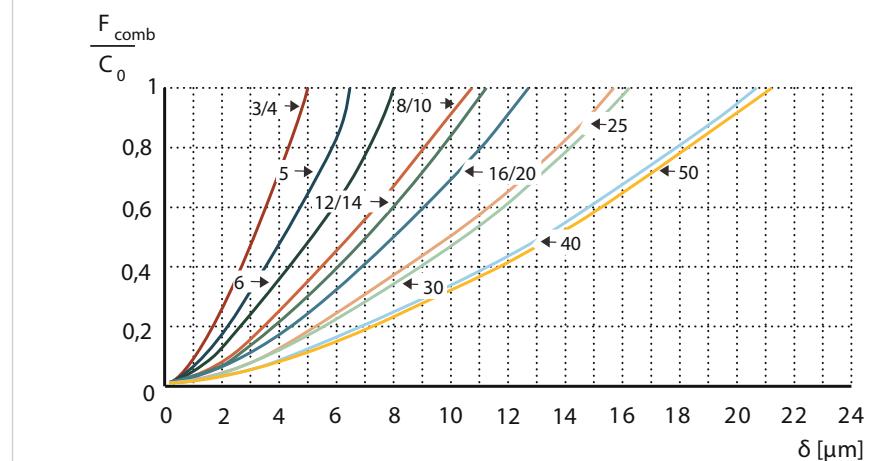
## 1.2 Rigidity

### 1.2.1 Rigidity of linear ball bearing guides

In addition to its load rating, the deflection of a linear guide system is a key criteria when selecting a suitable system. Rigidity is defined as the ratio of the load acting on the linear guide to the resulting deflection at the loading point and in the load direction. The deflection of the individual elements generally contributes to the total deflection of the system, whereby consideration must be given to whether these individual elements are arranged in parallel or in series.

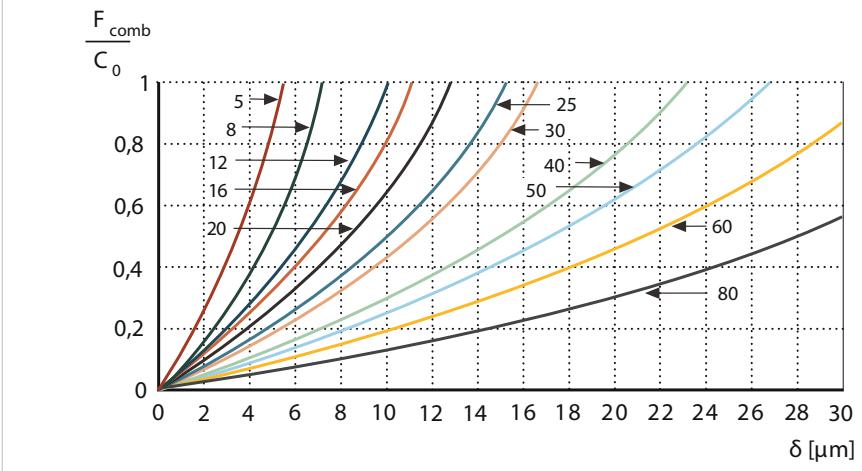
The convex-convex contact between the shaft and the balls results in the linear ball bearing guide having the lowest rigidity of all linear guide types.

Furthermore, in unsupported guides, the rigidity of the system is significantly reduced due to shaft deflection under load ►29|1.2.3.


### 1.2.2 Elastic deformation of clearance-free linear ball bearings in the contact zone

Starting from a clearance-free linear guide, the diagrams show the elastic deformation of various linear ball bearings as a function of the load. In the diagrams, the load is expressed as a fraction with the static load rating  $C_0$  as the denominator. For preloaded guides, the elastic deformation is smaller, meaning that the rigidity is higher than indicated in the diagrams.




If radial clearance is present, a higher elastic deformation must be expected. With an alternating load direction, it may be necessary to include the radial clearance as reverse clearance in the calculation.

□17 Elastic deformation for linear ball bearings of the compact range

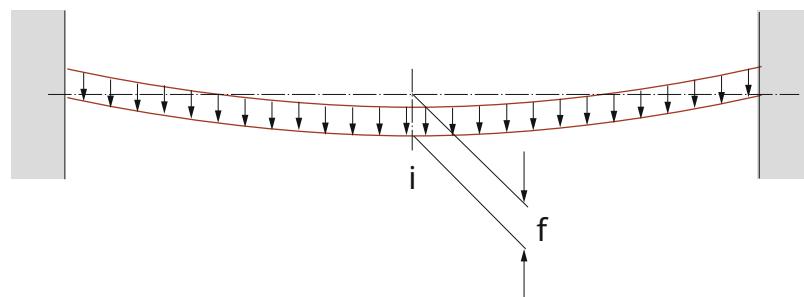


001B6B1C

18 Elastic deformation for linear ball bearings of the standard range

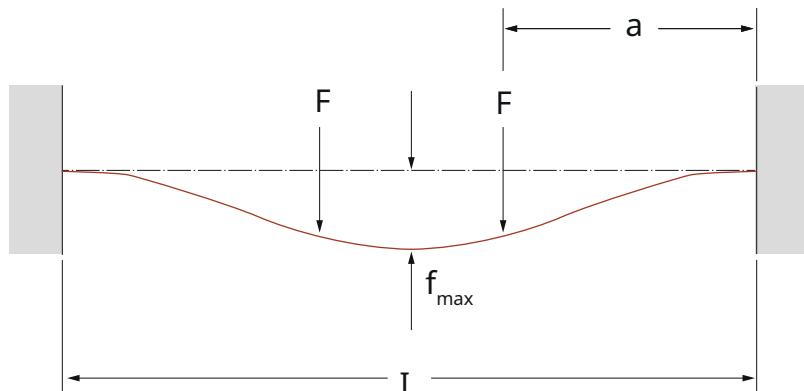


001B6B1F


|                   |     |                          |
|-------------------|-----|--------------------------|
| $C_0$             | $N$ | Basic static load rating |
| $F_{\text{comb}}$ | $N$ | Combined bearing load    |

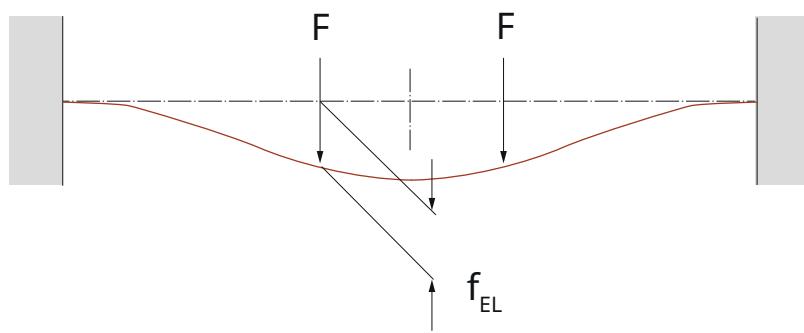
### 1.2.3 Shaft deflection and misalignment

For an approximate determination of shaft deflection and misalignment relative to the symmetry axis (longitudinal direction) of the linear bearing, the formulas should be used ►31 | f26 to ►31 | f32. These formulas are based on the general theory of strength of materials. They assume the most unfavorable loading conditions, with the linear bearing unit positioned midway between the two shaft blocks. The deflection of the shaft caused by its own weight must also be taken into account. It is assumed that the shaft is either clamped or freely supported at both ends. This approach provides the maximum value for expected deflection.


The formulas apply to  $E = 206000 \text{ N/mm}^2$  and  $G = 77000 \text{ N/m}^3$ .

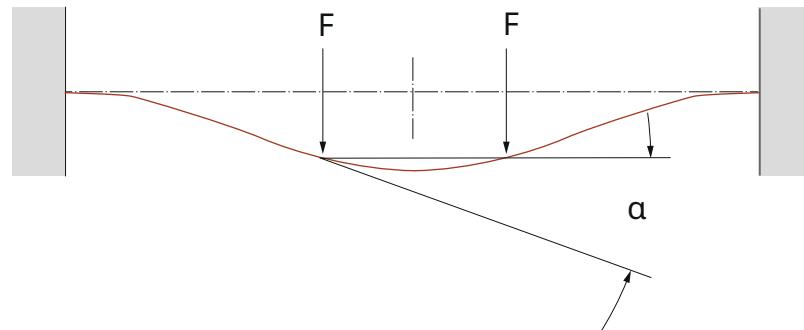
19 Shaft deflection




001B6B22

## 20 Maximum shaft deflection




001B6B23

## 21 Shaft deflection at the loading point



001B6B26

## 22 Misalignment



001B6B28

|            |    |                                                    |
|------------|----|----------------------------------------------------|
| $a$        | mm | Distance between clamping points and loading point |
| $d$        | mm | Shaft diameter                                     |
| $d_1$      | mm | Inside diameter of hollow shaft                    |
| $f$        | mm | Shaft deflection                                   |
| $f_{\max}$ | mm | max. shaft deflection                              |
| $F$        | N  | Bearing load                                       |
| $l$        | mm | Shaft length                                       |
| $\alpha$   | '  | Misalignment                                       |

## Clamped shaft

under own weight:

f<sub>26</sub>

$$f_{EG} = \frac{2.49 \cdot 10^{-7} \cdot [a \cdot (l-a)]^2}{(d^2 + d_1^2)}$$

f<sub>27</sub>

$$f_{max,EG} = \frac{1.56 \cdot 10^{-8} \cdot l^4}{(d^2 + d_1^2)}$$

f<sub>28</sub>

$$\alpha_{EG} = \frac{1.71 \cdot 10^{-6} \cdot a \cdot (l^2 + 2a^2 - 3al)}{(d^2 + d_1^2)}$$

with 2 symmetrically applied loads F:

f<sub>29</sub>

$$f_{EL} = \frac{0.0165 \cdot F \cdot a^3 \cdot \left( \frac{2-3a}{l} \right)}{(d^4 - d_1^4)}$$

f<sub>30</sub>

$$f_{max,EL} = \frac{0.00412 \cdot F \cdot a^2 \cdot (3l - 4a)}{(d^4 - d_1^4)}$$

f<sub>31</sub>

$$\alpha_{EL} = \frac{0.17 \cdot F \cdot a^2 \cdot \left( \frac{1-2a}{l} \right)}{(d^4 - d_1^4)}$$

total:

f<sub>32</sub>

$$\alpha_{tot} = \alpha_{EG} + \alpha_{EL}$$

## Freely supported shaft

under own weight:

fl33

$$f_{FG} = \frac{2.49 \cdot 10^{-7} \cdot a \cdot (l-a) \cdot (l^2 - a^2 + a \cdot l)}{(d^2 + d_1^2)}$$

fl34

$$f_{max,FG} = \frac{7.78 \cdot 10^{-8} \cdot l^4}{(d^2 + d_1^2)} = 5 \cdot f_{max,EG}$$

fl35

$$\alpha_{FG} = \frac{8.57 \cdot 10^{-7} \cdot (l^3 + 4a^3 - 6a^2l)}{(d^2 + d_1^2)}$$

with 2 symmetrically applied loads F:

fl36

$$f_{FL} = \frac{0.0165 \cdot F \cdot a^2 \cdot (3l - 4 \cdot a)}{(d^4 - d_1^4)}$$

fl37

$$f_{max,FL} = \frac{0.00412 \cdot F \cdot a \cdot (3l^2 - 4a^2)}{(d^4 - d_1^4)}$$

fl38

$$\alpha_{FL} = \frac{0.17 \cdot F \cdot a \cdot (l - 2a)}{(d^4 - d_1^4)}$$

total:

fl39

$$\alpha_{tot} = \alpha_{FG} + \alpha_{FL}$$

### Indices for results at loading points with distance a

|    |   |                                                               |
|----|---|---------------------------------------------------------------|
| EG | - | Clamped shaft under own weight                                |
| EL | - | Clamped shaft under 2 symmetrical individual loads F          |
| FG | - | Freely supported shaft under own weight                       |
| FL | - | Freely supported shaft under 2 symmetrical individual loads F |

## 1.3 Preload

### 1.3.1 Operating clearance

With slotted housings, the operating clearance of an installed linear ball bearing can be adjusted to suit the requirements of the application, ranging from slight clearance to preload. This is possible with slotted bearing units such as LUCS, LUCE, LUNS, and LUNE as well as with all single bearing units in an open design. For linear ball bearings in housings with a fixed diameter, the operating clearance of the mounted linear ball bearing results from the interaction of the following factors:

- housing bore tolerance ►43|1.10.2
- radial internal clearance of the linear ball bearing in the unmounted condition ►40|1.9
- tolerance of the shaft diameter ►177|14.1.3

The expected operating clearance for the various bearing designs can be found in the tables for shaft tolerances h6 and h7 and the 6 housing bore tolerance variants. While the first line indicates the theoretically possible limit values for the operating clearance after installation, the second line shows the limit values achieved with a confidence level of more than 99 %, assuming a Gaussian normal distribution of the individual tolerances.

! For housings with relatively rough bores and during running in, the operating clearance may increase due to smoothing effects.

! At operating temperature, the operating clearance is also influenced by the ambient temperature and the temperature of the shaft, bearing, and housing.

#### 8 Operating clearance of the compact range

| Designation | Operating clearance |    |    |    |    |     |    |    |    |     |    |     |
|-------------|---------------------|----|----|----|----|-----|----|----|----|-----|----|-----|
|             | h6                  |    |    |    |    |     | h7 |    |    |     |    |     |
|             | H6                  |    | J6 |    | K6 |     | H7 |    | J7 |     | K7 |     |
|             | U                   | L  | U  | L  | U  | L   | U  | L  | U  | L   | U  | L   |
|             | µm                  | µm | µm | µm | µm | µm  | µm | µm | µm | µm  | µm | µm  |
| LBBR 3      | 27                  | 0  | 23 | -4 | 20 | -7  | 37 | 0  | 30 | -7  | 27 | -10 |
|             | 22                  | 5  | 18 | 1  | 15 | -2  | 29 | 8  | 22 | 1   | 19 | -2  |
| LBBR 4      | 32                  | 0  | 28 | -4 | 25 | -7  | 42 | 0  | 35 | -7  | 32 | -10 |
|             | 26                  | 6  | 22 | 2  | 19 | -1  | 33 | 9  | 26 | 2   | 23 | -1  |
| LBBR 5      | 32                  | 0  | 28 | -4 | 25 | -7  | 42 | 0  | 35 | -7  | 32 | -10 |
|             | 26                  | 6  | 22 | 2  | 19 | -1  | 33 | 9  | 26 | 2   | 23 | -1  |
| LBBR 6      | 34                  | 0  | 29 | -5 | 25 | -9  | 45 | 0  | 37 | -8  | 33 | -12 |
|             | 27                  | 7  | 22 | 2  | 18 | -2  | 36 | 9  | 28 | 1   | 24 | -3  |
| LBBR 8      | 38                  | 0  | 33 | -5 | 29 | -9  | 51 | 0  | 43 | -8  | 39 | -12 |
|             | 30                  | 8  | 25 | 3  | 21 | -1  | 40 | 11 | 32 | 3   | 28 | -1  |
| LBBR 10     | 38                  | 0  | 33 | -5 | 29 | -9  | 51 | 0  | 43 | -8  | 39 | -12 |
|             | 30                  | 8  | 25 | 3  | 21 | -1  | 40 | 11 | 32 | 3   | 28 | -1  |
| LBBR 12     | 45                  | 0  | 40 | -5 | 34 | -11 | 60 | 0  | 51 | -9  | 45 | -15 |
|             | 36                  | 9  | 31 | 4  | 25 | -2  | 47 | 13 | 38 | 4   | 32 | -2  |
| LBBR 14     | 45                  | 0  | 40 | -5 | 34 | -11 | 60 | 0  | 51 | -9  | 45 | -15 |
|             | 36                  | 9  | 31 | 4  | 25 | -2  | 47 | 13 | 38 | 4   | 32 | -2  |
| LBBR 16     | 45                  | 0  | 40 | -5 | 34 | -11 | 60 | 0  | 51 | -9  | 45 | -15 |
|             | 36                  | 9  | 31 | 4  | 25 | -2  | 47 | 13 | 38 | 4   | 32 | -2  |
| LBBR 20     | 52                  | 0  | 47 | -5 | 41 | -11 | 68 | 0  | 59 | -9  | 53 | -15 |
|             | 42                  | 10 | 37 | 5  | 31 | -1  | 54 | 14 | 45 | 5   | 39 | -1  |
| LBBR 25     | 55                  | 0  | 49 | -6 | 42 | -13 | 72 | 0  | 61 | -11 | 54 | -18 |
|             | 44                  | 11 | 38 | 5  | 31 | -2  | 57 | 15 | 46 | 4   | 39 | -3  |

| Designation | Operating clearance |    |    |    |    |     |    |    |    |     |    |     |
|-------------|---------------------|----|----|----|----|-----|----|----|----|-----|----|-----|
|             | h6                  |    |    |    |    |     | h7 |    |    |     |    |     |
|             | H6                  |    | J6 |    | K6 |     | H7 |    | J7 |     | K7 |     |
|             | U                   | L  | U  | L  | U  | L   | U  | L  | U  | L   | U  | L   |
|             | µm                  | µm | µm | µm | µm | µm  | µm | µm | µm | µm  | µm | µm  |
| LBBR 30     | 55                  | 0  | 49 | -6 | 42 | -13 | 72 | 0  | 61 | -11 | 54 | -18 |
|             | 44                  | 11 | 38 | 5  | 31 | -2  | 57 | 15 | 46 | 4   | 39 | -3  |
| LBBR 40     | 66                  | 0  | 60 | -6 | 51 | -15 | 86 | 0  | 74 | -12 | 65 | -21 |
|             | 53                  | 13 | 47 | 7  | 38 | -2  | 68 | 18 | 56 | 6   | 47 | -3  |
| LBBR 50     | 66                  | 0  | 60 | -6 | 51 | -15 | 86 | 0  | 74 | -12 | 65 | -21 |
|             | 53                  | 13 | 47 | 7  | 38 | -2  | 68 | 18 | 56 | 6   | 47 | -3  |

9 Operating clearance of the standard range

| Designation                        | Operating clearance |    |    |    |    |     |    |    |    |     |    |     |
|------------------------------------|---------------------|----|----|----|----|-----|----|----|----|-----|----|-----|
|                                    | h6                  |    |    |    |    |     | h7 |    |    |     |    |     |
|                                    | H6                  |    | J6 |    | K6 |     | H7 |    | J7 |     | K7 |     |
|                                    | U                   | L  | U  | L  | U  | L   | U  | L  | U  | L   | U  | L   |
|                                    | µm                  | µm | µm | µm | µm | µm  | µm | µm | µm | µm  | µm | µm  |
| LBCR 5                             | 31                  | 0  | 26 | -5 | 22 | -9  | 42 | 0  | 34 | -8  | 30 | -12 |
|                                    | 25                  | 6  | 20 | 1  | 16 | -3  | 33 | 9  | 25 | 1   | 21 | -3  |
| LBCR 8                             | 36                  | 0  | 31 | -5 | 27 | -9  | 49 | 0  | 41 | -8  | 37 | -12 |
|                                    | 29                  | 7  | 24 | 2  | 20 | -2  | 39 | 10 | 31 | 2   | 27 | -2  |
| LBCR 12, LBCT 12, LBCD 12, LBCF 12 | 41                  | 0  | 36 | -5 | 30 | -11 | 56 | 0  | 47 | -9  | 41 | -15 |
|                                    | 33                  | 8  | 28 | 3  | 22 | -3  | 44 | 12 | 35 | 3   | 29 | -3  |
| LBCR 16, LBCT 16, LBCD 16, LBCF 16 | 41                  | 0  | 36 | -5 | 30 | -11 | 56 | 0  | 47 | -9  | 41 | -15 |
|                                    | 33                  | 8  | 28 | 3  | 22 | -3  | 44 | 12 | 35 | 3   | 29 | -3  |
| LBCR 20, LBCT 20, LBCD 20, LBCF 20 | 48                  | 0  | 42 | -6 | 35 | -13 | 65 | 0  | 54 | -11 | 47 | -18 |
|                                    | 38                  | 10 | 32 | 4  | 25 | -3  | 51 | 14 | 40 | 3   | 33 | -4  |
| LBCR 25, LBCT 25, LBCD 25, LBCF 25 | 48                  | 0  | 42 | -6 | 35 | -13 | 65 | 0  | 54 | -11 | 47 | -18 |
|                                    | 38                  | 10 | 32 | 4  | 25 | -3  | 51 | 14 | 40 | 3   | 33 | -4  |
| LBCR 30, LBCT 30, LBCD 30, LBCF 30 | 48                  | 0  | 42 | -6 | 35 | -13 | 65 | 0  | 54 | -11 | 47 | -18 |
|                                    | 38                  | 10 | 32 | 4  | 25 | -3  | 51 | 14 | 40 | 3   | 33 | -4  |
| LBCR 40, LBCD 40                   | 56                  | 0  | 50 | -6 | 41 | -15 | 76 | 0  | 64 | -12 | 55 | -21 |
|                                    | 44                  | 12 | 38 | 6  | 29 | -3  | 60 | 16 | 48 | 4   | 39 | -5  |
| LBCT 40, LBCF 40                   | 60                  | 0  | 54 | -6 | 45 | -15 | 80 | 0  | 68 | -12 | 59 | -21 |
|                                    | 48                  | 12 | 42 | 6  | 33 | -3  | 63 | 17 | 51 | 5   | 42 | -4  |
| LBCR 50, LBCT 50, LBCD 50, LBCF 50 | 60                  | 0  | 54 | -6 | 45 | -15 | 80 | 0  | 68 | -12 | 59 | -21 |
|                                    | 48                  | 12 | 42 | 6  | 33 | -3  | 63 | 17 | 51 | 4   | 42 | -4  |
| LBCR 60, LBCT 60                   | 71                  | 0  | 65 | -6 | 53 | -18 | 95 | 0  | 82 | -13 | 70 | -25 |
|                                    | 56                  | 15 | 50 | 9  | 38 | -3  | 75 | 20 | 62 | 7   | 50 | -5  |
| LBCR 80, LBCT 80                   | 71                  | 0  | 65 | -6 | 53 | -18 | 95 | 0  | 82 | -13 | 70 | -25 |
|                                    | 56                  | 15 | 50 | 9  | 38 | -3  | 75 | 20 | 62 | 7   | 50 | -5  |

## 1.4 Friction

The friction in a linear guide system is influenced not only by the load but also by a number of additional factors, particularly the type and size of the bearing, the running speed, and the quality and quantity of the lubricant used. The cumulative running resistance of a linear ball bearing is determined by several factors:

- rolling and sliding friction of the rolling elements in the loaded zone
- sliding friction between the rolling elements and the cage during recirculation
- friction within the lubricant
- sliding friction of the contact seals

The coefficient of friction for lubricated linear ball bearings without seals is between 0.0015 for heavy loads and 0.005 for light loads.

When bearings with contact double lip seals are used, the values for friction and starting friction of the seals must be added to the friction calculated using the coefficients of friction listed above. The values in the table therefore apply to unloaded linear ball bearings, prelubricated at the factory, with seals on both ends.

In lightly loaded linear ball bearings, the lubricant has a significant influence on frictional behavior. When a grease with the minimum viscosity specified in our recommendations is used, the basic friction of the linear ball bearing is correspondingly higher than when a grease with lower viscosity is used. However, this effect diminishes over time as the grease distributes evenly within the linear ball bearing and excess lubricant is expelled from the ball recirculations (running-in effect).

■ 10 Friction and starting friction of linear ball bearings

| Designation   |                                    | Friction | Starting friction |
|---------------|------------------------------------|----------|-------------------|
| Compact range | Standard range                     | N        | N                 |
| LBBR 3        | -                                  | 0.4      | 1                 |
| LBBR 4        | -                                  | 0.5      | 1.3               |
| LBBR 5        | -                                  | 0.6      | 1.7               |
| -             | LBCR 5                             | 0.8      | 2                 |
| LBBR 6        | -                                  | 0.7      | 2                 |
| LBBR 8        | -                                  | 0.8      | 2.5               |
| -             | LBCR 8                             | 1.5      | 4                 |
| LBBR 10       | -                                  | 1        | 3.5               |
| LBBR 12       | -                                  | 1.5      | 5                 |
| -             | LBCR 12, LBCT 12, LBCD 12, LBCF 12 | 2.5      | 5                 |
| LBBR 14       | -                                  | 1.8      | 6                 |
| LBBR 16       | -                                  | 2        | 7                 |
| -             | LBCR 16, LBCT 16, LBCD 16, LBCF 16 | 3        | 7                 |
| LBBR 20       | -                                  | 2.5      | 8                 |
| -             | LBCR 20, LBCT 20, LBCD 20, LBCF 20 | 4        | 8                 |
| -             | -                                  | 4        | 12                |
| LBBR 25       | -                                  | 4        | 12                |
| -             | LBCR 25, LBCT 25, LBCD 25, LBCF 25 | 5        | 11                |
| -             | -                                  | 5        | 14                |
| LBBR 30       | -                                  | 5.5      | 16                |
| -             | LBCR 30, LBCT 30, LBCD 30, LBCF 30 | 7        | 14                |
| -             | -                                  | 6        | 18                |

| Designation   |                                    | Friction | Starting friction |
|---------------|------------------------------------|----------|-------------------|
| Compact range | Standard range                     | N        | N                 |
| LBBR 40       | -                                  | 6.5      | 20                |
| -             | LBCR 40, LBCD 40                   | 8        | 19                |
| -             | LBCT 40, LBCF 40                   | 8        | 24                |
| LBBR 50       | -                                  | 8        | 24                |
| -             | LBCR 50, LBCT 50, LBCD 50, LBCF 50 | 10       | 30                |
| -             | LBCR 60, LBCT 60                   | 12       | 36                |
| -             | LBCR 80, LBCT 80                   | 15       | 45                |

## 1.5 Load carrying capacity

### 1.5.1 Required minimum load

To ensure slip-free operation of a linear ball bearing, a general guideline is that a load of  $P \geq 0.02 \cdot C$  should act on the bearing.

The minimum load is particularly important for linear guides operating at high running speeds or high accelerations. In such cases, the inertia forces of the balls and the frictional components of the lubricant can adversely affect rolling conditions in the bearing and lead to harmful sliding movements of the rolling elements on the raceway.

### 1.5.2 Permissible maximum load

According to ISO 14728-1, the equivalent dynamic mean load  $P_m$  of a linear bearing must not exceed 50 % of the dynamic load rating  $C$  when calculating the bearing rating life. Higher loads in operation result in uneven load distribution and can significantly reduce the rating life of the bearing. In accordance with ISO 14728-2, the maximum load should also not exceed 50 % of the static load rating  $C_0$ .

## 1.6 Acceleration and speed

Linear ball bearings can be operated up to the following limits:

- maximum speed:  $v_{max} = 5 \text{ m/s}$
- maximum acceleration:  $a_{max} = 100 \text{ m/s}^2$

Higher running speeds and acceleration values may be possible depending on the bearing type, bearing size, applied load, lubricant, or preload. Please contact Schaeffler in such cases.

## 1.7 Lubrication

The correct type and quantity of lubricant play a decisive role in ensuring that linear bearings fulfill their function to optimum effect. The lubricant reduces direct metallic contact between the rolling elements and the raceway plates, thereby minimizing wear. In addition, the lubricant protects both the linear bearing and the shaft against corrosion. In the majority of linear bearing applications, grease lubrication is used.

### 1.7.1 Grease lubrication

Under normal operating conditions, linear bearings must be lubricated with grease. Compared with lubricating oil, grease offers the advantage of being more easily retained within the bearing, which is especially important for inclined or vertical axes of travel. In addition, grease contributes to sealing the bearing point against liquid contaminants or moisture.

#### 1.7.1.1 Base oil viscosity

The viscosity of the base oil in a lubricating grease is decisive for the formation of a separating hydrodynamic film between the rolling elements and the raceway plates.

In general, the viscosity of lubricating oils is specified at 40 °C. This also applies to the mineral base oils contained in lubricating greases.

The base oils of commercially available rolling bearing greases typically have viscosities of 15 mm<sup>2</sup>/s to 500 mm<sup>2</sup>/s (at 40 °C). Greases with higher base oil viscosity often release oil only very slowly, which may result in insufficient lubrication of the bearing points.

#### 1.7.1.2 Consistency classes

Metal soap greases of NLGI consistency classes 2 and 3 in accordance with DIN 51818 and DIN 51825, are particularly suitable for the lubrication of linear bearings. The consistency of the lubricating grease should not change excessively under varying temperatures within the operating temperature range or under differing load conditions. Greases that become soft at higher temperatures may escape from the bearing point, while greases that become too stiff at lower temperatures may hinder the movement of the linear guide.

In certain application areas, special requirements apply to the purity, composition, and compatibility of the lubricating grease, for example in the food industry or in medical technology. In such cases, additional criteria must be defined for the lubricant, in addition to viscosity and consistency class.

#### 1.7.1.3 Temperature range

The operating temperature range of a lubricant is primarily determined by the type of base oil, the thickener, and the additives used.

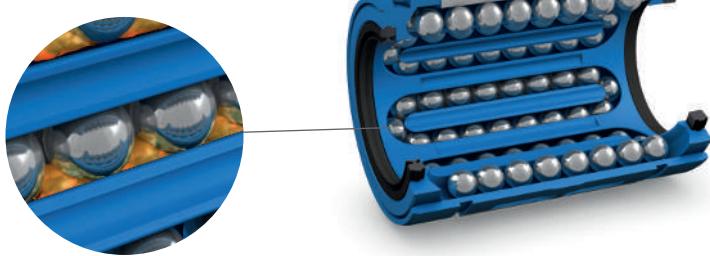
The lower temperature limit, i.e., the lowest temperature at which the linear bearing can still function reliably, depends mainly on the type and viscosity of the base oil. The upper temperature limit is determined by the type of thickener and its dropping point. The dropping point is the temperature at which the lubricating grease changes its consistency and transitions to a liquid state.



At higher operating temperatures, the aging process of a lubricating grease accelerates. The resulting reaction products have a negative effect on the lubricating properties and on the conditions in the rolling contact.

Unlike mineral oil-based lubricants, greases with synthetic base oils can be used both at higher and at lower temperatures.

#### 1.7.1.4 Corrosion protection in lubricants


Lubricants are generally blended with additives that improve corrosion protection. In addition, the type of thickener used also plays a decisive role.

Lithium greases and calcium soap greases exhibit excellent corrosion protection properties and are also resistant to washout by any penetrating water. For applications in which corrosion protection is an important operating parameter, Schaeffler recommends the use of corrosion-resistant linear bearings and shafts made of corrosion-resistant steel, or chrome-plated shafts.

### 1.7.2 Delivery condition from the factory

Linear ball bearings and linear ball bearing units with a shaft diameter of 8 mm or larger are greased at the factory. This reduces both assembly time and maintenance effort for the user. The linear ball bearings are lubricated with a high-performance grease suitable for a wide range of industrial and automotive applications. This lithium soap- and mineral oil-based grease contains EP-additives (Extreme Pressure), which ensure excellent wear protection and corrosion protection.

23 Factory pre-lubrication



001C3F34

Special greases for use in food industry or cleanroom environments are available on request. If required, linear ball bearings can also be supplied without a factory pre-lubrication; this must be specified when ordering. Linear bearings supplied without a factory pre-lubrication must then be lubricated appropriately prior to installation. When using alternative lubricants, it must be ensured that they possess the necessary properties and are compatible with the bearing materials and the preservative used.

Linear ball bearings are generally protected for transport and storage with a corrosion-inhibiting preservative. This preservative is compatible with the lubricating grease but not suitable for food contact.



As standard, linear ball bearings LBBR 6 and LBCR 5 are prelubricated with lubricating oil at the factory. LBBR 3, LBBR 4, and LBBR5 are supplied without lubricant as standard, but like other bearings, are protected with a preservative for transport and storage.

Properties of the lubricating grease:

- thickener: lithium soap
- base oil: mineral oil
- operating temperature during continuous operation of -20 to +110 °C
- kinematic viscosity of the base oil of 200 mm<sup>2</sup>/s
- consistency class NLGI 2
- EP-additives for long service life

### 1.7.3 Initial grease application

Unless otherwise specified, linear ball bearings are pre-lubricated at the factory and supplied ready for installation. An initial grease application is not required. If, for any reason, the ball bearing has not yet been lubricated, it must receive an initial application of grease before mounting, ensuring that the grease is distributed across all ball rows and ball recirculation elements.

The initial grease application must be carried out 3 times as follows:

1. Grease the linear bearing with the calculated lubricant quantity  $G_p > 39 \text{ } \mu\text{m}^3$ .
2. Move the linear bearing back and forth several times, ensuring that the travel distance is longer than the bearing length.
3. Repeat steps 1 and 2 2 more times.
4. Check the lubricant film on the shaft.

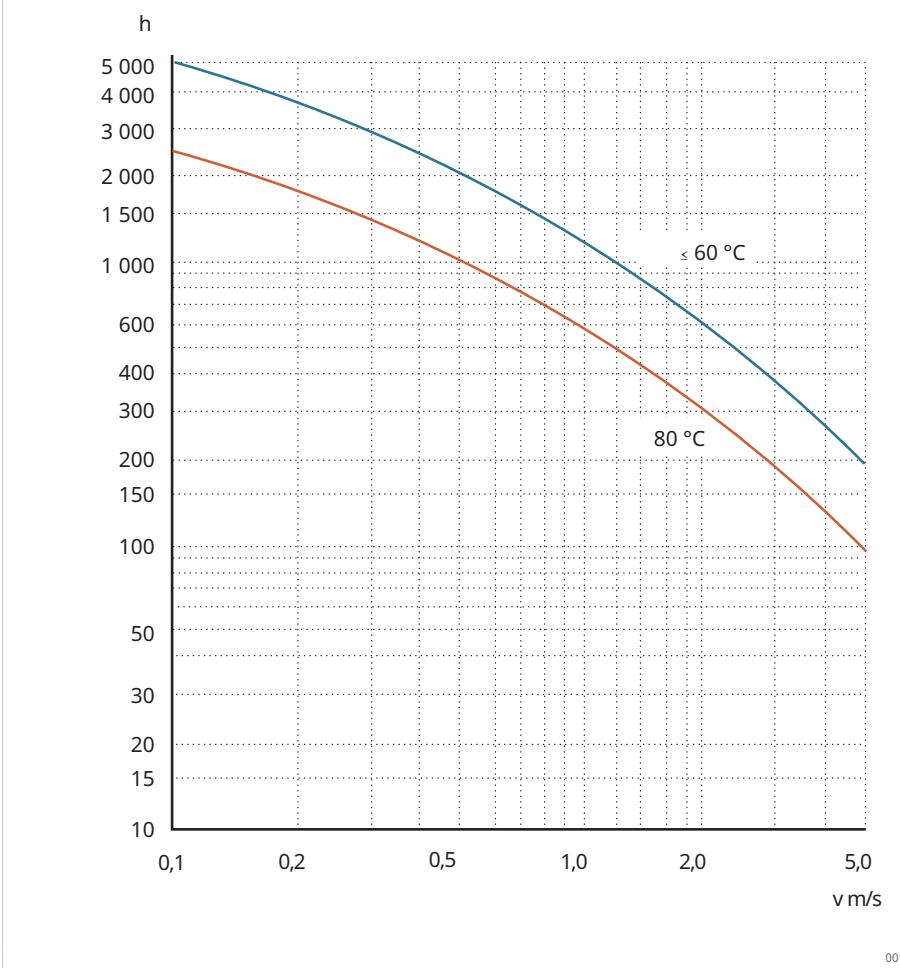
### 1.7.4 Relubrication

The required grease quantity for relubrication can be calculated using the following formula:

$\mu\text{m}^3$

$$G_p = F_w \cdot C \cdot n_r \cdot \text{const}_1$$

|                    |    |                                    |
|--------------------|----|------------------------------------|
| C                  | mm | Length of the linear ball bearing  |
| const <sub>1</sub> | -  | Constant 1                         |
| F <sub>w</sub>     | mm | Inscribed diameter of the ball set |
| G <sub>p</sub>     | g  | Lubricant quantity                 |
| n <sub>r</sub>     | -  | Number of ball rows                |


#### 11 Constant 1

| Designation | Size      | const <sub>1</sub> |
|-------------|-----------|--------------------|
| LBBR        | 8 ... 50  | 0.00003            |
| LBCR, LBCD  | 8 ... 40  | 0.00003            |
|             | 50 ... 80 | 0.00009            |
| LBCT, LBCF  | 12 ... 40 | 0.000025           |
|             | 50 ... 80 | 0.000075           |

Relubrication should always be performed while the lubrication conditions in the bearing are still satisfactory. The relubrication intervals for linear ball bearings depend on a range of different factors. The main factors influencing the relubrication interval are the average running speed, load, operating temperature, shaft length, and grease quality. The appropriate relubrication interval for a given application must be determined by testing under actual operating conditions.

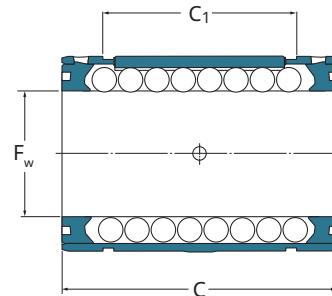
The reference values provided apply to bearings in stationary machines operating under normal load.

24 Relubrication interval as a function of running speed and operating temperature



## 1.8 Temperature range

The permissible temperature range for the continuous operation of linear ball bearings is between  $-20^{\circ}\text{C}$  and  $+80^{\circ}\text{C}$ , and is determined by the materials used for the cage and the seals. Lower or higher temperatures can also be tolerated for short periods of time.


## 1.9 Tolerances

The main dimensions of linear ball bearings from the compact range and standard range comply with the standard ISO 10285. Linear ball bearings are manufactured to the specified tolerances. The respective values affect the operating clearance or preload of a linear guide.



On request, linear ball bearings can also be supplied with customer-specific tolerance values for the inscribed diameter of the ball set, allowing both the position and width of the tolerance field to be modified.

25 Tolerances for the inscribed diameter of the ball set



001C3F2B

|                |    |                                    |
|----------------|----|------------------------------------|
| C              | mm | Length                             |
| C <sub>1</sub> | mm | Distance of grooves                |
| F <sub>w</sub> | mm | Inscribed diameter of the ball set |
| L              | -  | Lower limit dimension              |
| U              | -  | Upper limit dimension              |

12 Tolerances for the inscribed diameter of the ball set for linear ball bearings of the compact range

| Designation | Tolerance      |    |    |
|-------------|----------------|----|----|
|             | F <sub>w</sub> | U  | L  |
|             | μm             | μm | μm |
| LBBR 3      | +12            | 0  | 0  |
| LBBR 4      | +15            | 0  | 0  |
| LBBR 5      | +15            | 0  | 0  |
| LBBR 6      | +15            | 0  | 0  |
| LBBR 8      | +18            | 0  | 0  |
| LBBR 10     | +18            | 0  | 0  |
| LBBR 12     | +21            | 0  | 0  |
| LBBR 14     | +21            | 0  | 0  |
| LBBR 16     | +21            | 0  | 0  |
| LBBR 20     | +26            | 0  | 0  |
| LBBR 25     | +26            | 0  | 0  |
| LBBR 30     | +26            | 0  | 0  |
| LBBR 40     | +31            | 0  | 0  |
| LBBR 50     | +31            | 0  | 0  |

13 Tolerances for the inscribed diameter of the ball set for linear ball bearings of the standard range

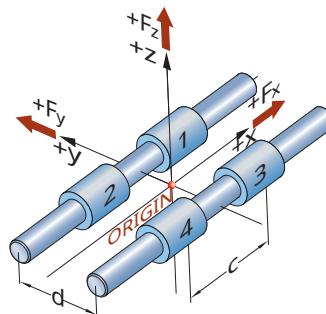
| Designation                        | Tolerance      |    |    |
|------------------------------------|----------------|----|----|
|                                    | F <sub>w</sub> | U  | L  |
|                                    | μm             | μm | μm |
| LBCR 5                             | +12            | 0  | 0  |
| LBCR 8                             | +16            | 0  | 0  |
| LBCR 12, LBCT 12, LBCD 12, LBCF 12 | +17            | 0  | 0  |
| LBCR 16, LBCT 16, LBCD 16, LBCF 16 | +17            | 0  | 0  |
| LBCR 20, LBCT 20, LBCD 20, LBCF 20 | +19            | 0  | 0  |
| LBCR 25, LBCT 25, LBCD 25, LBCF 25 | +19            | 0  | 0  |
| LBCR 30, LBCT 30, LBCD 30, LBCF 30 | +19            | 0  | 0  |
| LBCR 40, LBCD 40,                  | +21            | 0  | 0  |
| LBCT 40, LBCF 40                   | +25            | 0  | 0  |

| Designation                        | Tolerance     |   |
|------------------------------------|---------------|---|
|                                    | $F_w$         |   |
|                                    | U             | L |
| $\mu\text{m}$                      | $\mu\text{m}$ |   |
| LBCR 50, LBCT 50, LBCD 50, LBCF 50 | +25           | 0 |
| LBCR 60, LBCT 60                   | +30           | 0 |
| LBCR 80, LBCT 80                   | +30           | 0 |

14 Length tolerances for linear ball bearings of the compact range

| Designation | Length tolerance |        |
|-------------|------------------|--------|
|             | $C$              |        |
|             | U                | L      |
| $\text{mm}$ | $\text{mm}$      |        |
| LBBR 3      | +0.18            | -0.18  |
| LBBR 4      | +0.215           | -0.215 |
| LBBR 5      | +0.215           | -0.215 |
| LBBR 6      | +0.26            | -0.26  |
| LBBR 8      | +0.26            | -0.26  |
| LBBR 10     | +0.26            | -0.26  |
| LBBR 12     | +0.26            | -0.26  |
| LBBR 14     | +0.26            | -0.26  |
| LBBR 16     | +0.26            | -0.26  |
| LBBR 20     | +0.26            | -0.26  |
| LBBR 25     | +0.31            | -0.31  |
| LBBR 30     | +0.31            | -0.31  |
| LBBR 40     | +0.37            | -0.37  |
| LBBR 50     | +0.37            | -0.37  |

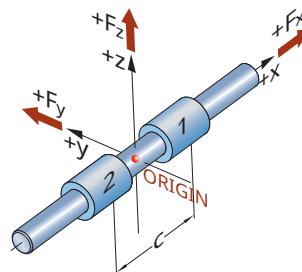
15 Length tolerances for linear ball bearings of the standard range


| Designation                        | Length tolerance |             |             |             |
|------------------------------------|------------------|-------------|-------------|-------------|
|                                    | $C$              |             | $C_1$       |             |
|                                    | U                | L           | U           | L           |
|                                    | $\text{mm}$      | $\text{mm}$ | $\text{mm}$ | $\text{mm}$ |
| LBCR 5                             | 0                | -0.52       | +0.27       | 0           |
| LBCR 8                             | 0                | -0.52       | +0.27       | 0           |
| LBCR 12, LBCT 12, LBCD 12, LBCF 12 | 0                | -0.62       | +0.33       | 0           |
| LBCR 16, LBCT 16, LBCD 16, LBCF 16 | 0                | -0.62       | +0.33       | 0           |
| LBCR 20, LBCT 20, LBCD 20, LBCF 20 | 0                | -0.62       | +0.39       | 0           |
| LBCR 25, LBCT 25, LBCD 25, LBCF 25 | 0                | -0.74       | +0.39       | 0           |
| LBCR 30, LBCT 30, LBCD 30, LBCF 30 | 0                | -0.74       | +0.46       | 0           |
| LBCR 40, LBCT 40, LBCD 40, LBCF 40 | 0                | -0.74       | +0.46       | 0           |
| LBCR 50, LBCT 50, LBCD 50, LBCF 50 | 0                | -0.87       | +0.6        | 0           |
| LBCR 60, LBCT 60                   | 0                | -1          | +0.8        | 0           |
| LBCR 80, LBCT 80                   | 0                | -1          | +1          | 0           |

## 1.10 Design of bearing arrangements

### 1.10.1 Use of linear bearings

A typical linear slide consists of 4 linear bearings mounted in housings and 2 shafts.


26 Design variant: 4 linear bearings mounted in housings and 2 shafts



001B7136

Another design variant involves the use of a single shaft with 2 linear bearings. For the configuration with 1 shaft and 2 bearings, it is important to prevent the linear bearing from rotating around the shaft. This can be achieved by suitable measures, such as using an anti-rotation lock. Schaeffler generally recommends using 2 linear bearings per shaft. The second linear bearing may be omitted only in exceptional cases, such as when no torque loads occur or when the load involved is very low (configuration with 1 shaft and 1 bearing or 2 shafts and 2 bearings).

27 Design variant: 1 shaft with 2 linear bearings



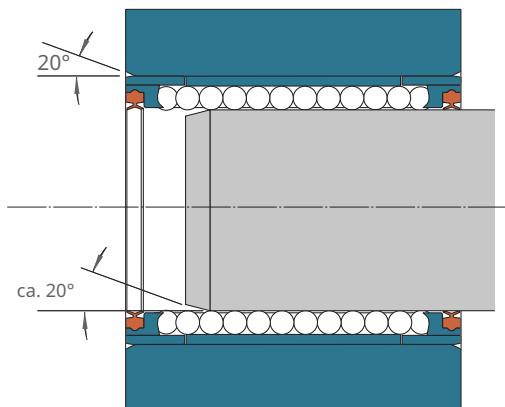
001B7134

Linear bearings and linear bearing units in a closed design offer excellent sealing properties and are easy to install. They are typically used in applications with shorter shafts, where the influence of shaft deflection is limited ►23|1.1.9.6. For longer shaft guidance systems, particularly those subjected to high loads, the use of linear ball bearings in open design is recommended. This allows the use of shaft supports which prevent any shaft deflection.

### 1.10.2 Housing design

A linear ball bearing requires a housing that provides sufficient support for the raceway plates. The diameter tolerance, cylindricity, and roughness of the bearing seat surfaces are critical factors for the performance of a linear ball bearing system.

To ensure the self-holding functionality of linear bearings in the compact range, the housing bore must exhibit a diameter tolerance of J6 or J7. For the standard range, the dimensional tolerance should correspond to a minimum of quality grade H6 or H7.


In general, the housing bore tolerances, in combination with the bearing type tolerances and the shaft tolerances, determine the operating clearance of the linear guide system ►33|1.3. This means that the operating clearance can be reduced by selecting a housing bore tolerance of J or K.

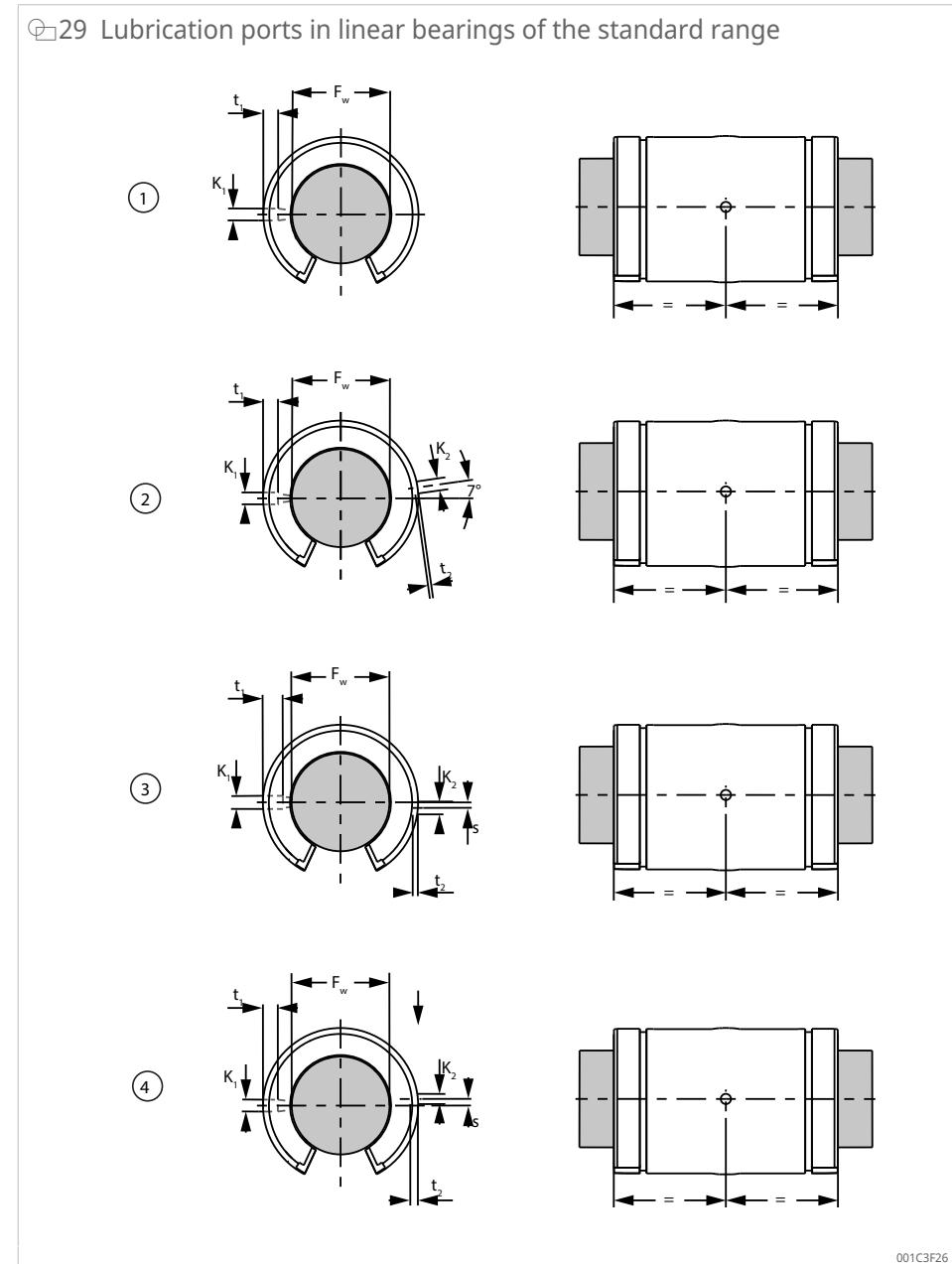
The cylindricity tolerance according to DIN EN ISO 1101 should be 1 to 2 IT grades better than the dimensional tolerance.

The following apply as guideline values for the roughness of the bearing seat surfaces  $R_a$  in the housing bore:

- diameter tolerance IT7:  $R_a = 1.6 \mu\text{m}$
- diameter tolerance IT6:  $R_a = 0.8 \mu\text{m}$

28 Chamfers on the housing bore and shaft




To facilitate assembly, the housing bore should have a chamfer of approximately  $20^\circ$ . This facilitates the insertion of the linear ball bearing into the housing.

### 1.10.3 Bearing fixation

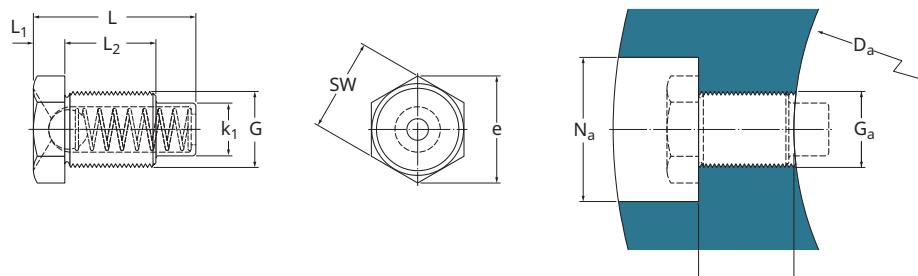
Linear ball bearings of the compact range LBBR have 2 plastic end rings with an outer diameter which is slightly larger than the nominal diameter of the linear ball bearing. This oversize, in combination with a housing bore tolerance of J7 or J6, ensures the self-holding functionality of the bearing. Additional axial fixation of the linear ball bearing is not required if the housing covers the full bearing length and normal ambient and operating conditions exist.

All linear bearings of the standard range must be fixed in the housing. This is achieved by bores in the outside surface of the bearing, which accommodate pins used to secure the linear ball bearing axially and against rotation. The position of the lubrication port is marked on the end face of the bearing with a small circle (D-design). The position and diameter of the bores in the outside diameter of the bearing are given in the table below, with value  $K_1$  applying to the relubrication and fixation of linear bearings in Schaeffler housings and value  $K_2$  referring to the alternative bore for housings from other manufacturers.

29 Lubrication ports in linear bearings of the standard range



001C3F26


16 Lubrication ports for linear ball bearings

| Designation                                 | Dimensions     |                |                |                |    | Matching<br>grease fit-<br>ting | Grub<br>screw | Straight<br>pin or<br>grooved<br>pin | Slot-<br>ted<br>pin | No. |
|---------------------------------------------|----------------|----------------|----------------|----------------|----|---------------------------------|---------------|--------------------------------------|---------------------|-----|
|                                             | K <sub>1</sub> | t <sub>1</sub> | K <sub>2</sub> | t <sub>2</sub> | s  |                                 |               |                                      |                     |     |
|                                             | mm             | mm             | mm             | mm             | mm |                                 |               |                                      |                     |     |
| LBCT 12,<br>LBCF 12                         | 3.0            | 2.6            | 3.0            | 1.0            | -  | VN-LHC 20                       | M4            | 3.0                                  | 3.0                 | 2   |
| LBCR 12,<br>LBCD 12                         | 3.0            | 2.6            | -              | -              | -  | VN-LHC 20                       | M4            | 3.0                                  | 3.0                 | 1   |
| LBCR 16,<br>LBCT 16,<br>LBCD 16,<br>LBCF 16 | 3.0            | 2.6            | -              | -              | -  | VN-LHC 20                       | M4            | 3.0                                  | 3.0                 | 1   |
| LBCR 20,<br>LBCT 20,<br>LBCD 20,<br>LBCF 20 | 3.0            | 2.6            | -              | -              | -  | VN-LHC 20                       | M4            | 3.0                                  | 3.0                 | 1   |

| Designation                                 | Dimensions     |                |                |                |     | Matching grease fitting | Grub screw | Straight pin or grooved pin | Slotted pin | No. |
|---------------------------------------------|----------------|----------------|----------------|----------------|-----|-------------------------|------------|-----------------------------|-------------|-----|
|                                             | K <sub>1</sub> | t <sub>1</sub> | K <sub>2</sub> | t <sub>2</sub> | s   |                         |            |                             |             |     |
|                                             | mm             | mm             | mm             | mm             | mm  |                         |            |                             |             |     |
| LBCR 25,<br>LBCT 25,<br>LBCD 25,<br>LBCF 25 | 3.5            | 4.5            | 3.0            | 1.4            | 1.5 | VN-LHC 40               | M5         | 3.0                         | 3.5         | 3   |
| LBCR 30,<br>LBCT 30,<br>LBCD 30,<br>LBCF 30 | 3.5            | 4.5            | 3.0            | 2.3            | 2.0 | VN-LHC 40               | M5         | 3.0                         | 3.5         | 4   |
| LBCR 40,<br>LBCD 40                         | 3.5            | 4.5            | 3.0            | 2.7            | 1.5 | VN-LHC 40               | M5         | 3.0                         | 3.5         | 4   |
| LBCT 40,<br>LBCF 40                         | 3.5            | —              | 3.0            | —              | 1.5 | VN-LHC 40               | M5         | 3.0                         | 3.5         | 4   |
| LBCR 50,<br>LBCT 50,<br>LBCD 50,<br>LBCF 50 | 4.5            | —              | 5.0            | —              | 2.5 | VN-LHC 50               | M6         | 4.0                         | 4.5         | 4   |
| LBCR 60,<br>LBCT 60,<br>LBCD 60,<br>LBCF 60 | 6.0            | —              | 5.0            | —              | 2.5 | VN-LHC 80               | M8         | 6.0                         | 6.0         | 4   |
| LBCR 80,<br>LBCT 80,<br>LBCD 80,<br>LBCF 80 | 8.0            | —              | 5.0            | —              | 2.5 | VN-LHC 80               | M8         | 8.0                         | 8.0         | 4   |

These bores also serve as lubrication ports. When VN-LHC grease fittings are used, both functions – relubrication and fixation of the linear ball bearing in the housing – can be utilized. The grease fitting is designed according to DIN 3405 as a funnel-type grease fitting and is suitable for grease guns with a needle nozzle or pointed nozzle.

□30 Grease fitting VN-LHC



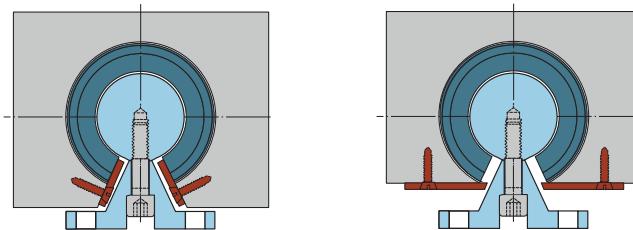
001B731B

■17 Grease fitting VN-LHC

| Designation | Dimensions |      |                |                |                |      |    | Mounting dimensions |                |                |                   |
|-------------|------------|------|----------------|----------------|----------------|------|----|---------------------|----------------|----------------|-------------------|
|             | G          | L    | L <sub>1</sub> | L <sub>2</sub> | k <sub>1</sub> | e    | SW | G <sub>a</sub>      | G <sub>b</sub> | N <sub>a</sub> | Tightening torque |
|             | —          | mm   | mm             | mm             | mm             | mm   | mm | —                   | mm             | mm             | Nm                |
| VN-LHC 20   | M4         | 7.7  | 1.5            | 3.5            | 3.0            | 5.5  | 5  | M4                  | 3.8            | 3.0            | 1.0               |
| VN-LHC 40   | M5         | 11.1 | 2.0            | 5.0            | 3.5            | 6.6  | 6  | M5                  | 5.2            | 3.0            | 2.2               |
| VN-LHC 50   | M6         | 14.8 | 2.5            | 7.0            | 4.5            | 7.8  | 7  | M6                  | 7.2            | 4.0            | 3.7               |
| VN-LHC 80   | M8         | 20.5 | 3.5            | 10.5           | 6.0            | 11.1 | 10 | M8                  | 11.2           | 8.0            | 9.3               |

! For a defined orientation, care must be taken to ensure that the main load direction of the bearing and the bore for bearing fixation are positioned at 90° to each other, and that the housing design, particularly the bore for locating the bearing, is consistent with the factor for load direction used in the rating life calculation.

In addition to grease fittings, the following components can also be used for anti-rotation purposes:

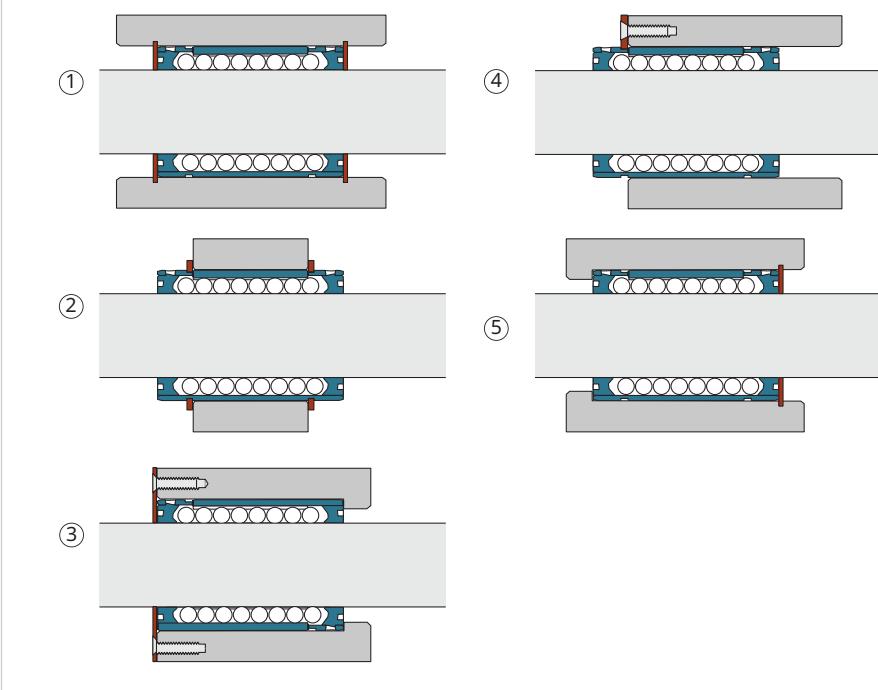

- grub screws in accordance with DIN EN 27435 or DIN EN ISO 4028
- straight pins in accordance with DIN EN ISO 2338
- grooved pins in accordance with DIN EN ISO 8739 or DIN EN ISO 8744
- slotted pins in accordance with DIN EN ISO 8752

! If the screw or pin used extends deeper into the bearing than the value  $t_1$ , the linear ball bearing may become severely damaged.

Linear ball bearings LBCR 5 and LBCR 8 have no lubrication port, but are self-retaining when the temperature is limited to a maximum of 60 °C and the ball bearings are installed in housings at least one bearing length long. For shorter housings, retaining rings are required. Linear plain bearings LPAR 5 and LPAR 8 are manufactured without lubrication ports.

If none of the aforementioned anti-rotation options can be used for design reasons, open linear ball bearings can alternatively be secured with plates that are screwed to the housing.

31 Alternative fixation of open linear ball bearings




001B6B4C

#### 1.10.4 Axial fixation

For bearing fixation, Schaeffler recommends the use of grease fittings VN-LHC. Most linear bearing applications require the bearing to be fixed both axially and against rotation, for example with open linear ball bearings, or when a closed linear ball bearing must be installed in a defined orientation. In some applications, however, it is sufficient to provide axial location only. The most important axial fixation methods are described below.

### 32 Axial fixation



001B72FB

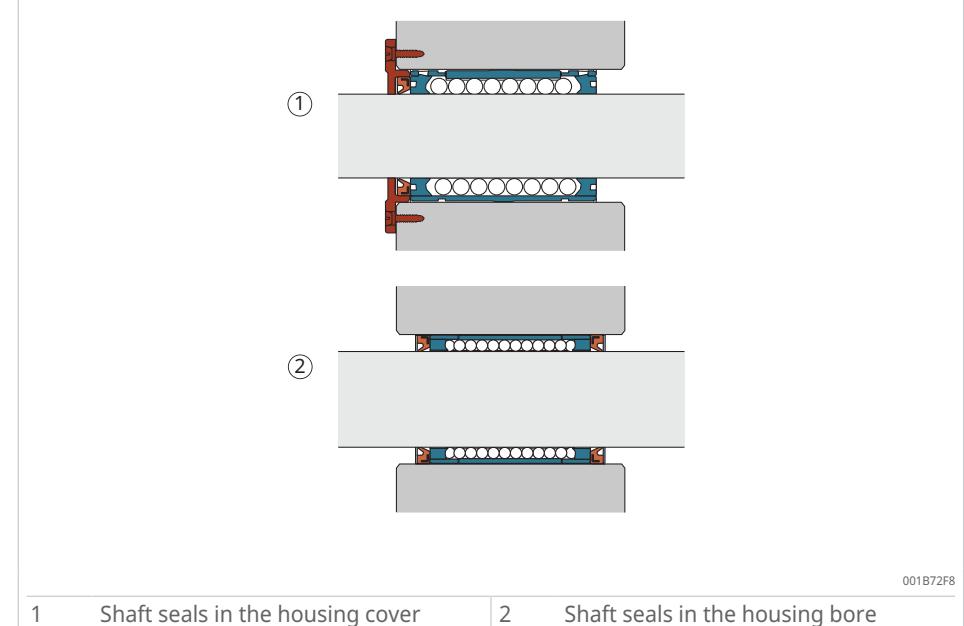
|   |                                     |   |                                            |
|---|-------------------------------------|---|--------------------------------------------|
| 1 | Retaining rings                     | 2 | Retaining rings in accordance with DIN 471 |
| 3 | End plates and covers               | 4 | Retaining plates                           |
| 5 | Mounting against a housing shoulder |   |                                            |

Axial fixation using retaining rings is particularly space-saving, allows fast installation and removal, and simplifies machining of the mating components. Linear ball bearings and linear plain bearings of the standard range are equipped with 2 grooves on the outside diameter to accommodate the retaining rings.

When fixing bearings axially with retaining rings in accordance with DIN 471, it should be noted that the clamping force of the retaining ring applies a slight preload to the balls via the raceway plates, which are loosely held in the cage, and onto the shaft. However, the radial clearance between the outside surfaces of the raceway plates and the housing bore remains unchanged.

Instead of retaining rings, axial fixation can also be achieved using end plates, covers, or retaining plates that are screwed to the housing.

Another option is to locate the linear bearing against a housing shoulder. In this instance, the outer radius of the linear bearing and the corner radius  $R$  in the housing must be observed.




In all cases, care must be taken to ensure that a residual axial clearance remains between the screw-mounting surfaces and the bearing.

#### 1.10.5 Sealing

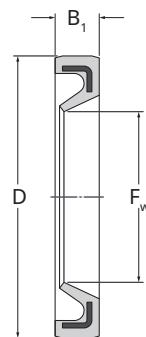
All linear ball bearings are available with double lip seals. The seals serve primarily to prevent the ingress of solid contaminants and moisture, and to retain the lubricant inside the bearing, thereby ensuring the full performance capability of the linear ball bearing.

### 33 Sealing with shaft seals



Linear bearings used under harsh operating conditions may require additional protection. In such cases, shaft seals are typically used. Housings fitted with such additional shaft seals must be twice the width of the shaft seal longer. Shaft seals can be either integrated into the housing cover or inserted directly into the housing bore.

Since ambient conditions can vary widely, each application must be assessed individually, and the appropriate sealing arrangement selected. A number of factors must be considered, including the design features, the available installation space, the type and degree of contamination, as well as cost considerations and the maximum permissible friction. For self-aligning linear ball bearings, care must be taken to ensure that the seal always remains in contact with the shaft.


#### 1.10.5.1 External shaft seals

Linear bearings of the compact range that operate under very harsh environmental conditions can be fitted with additional external shaft seals from Schaeffler to ensure a longer service life. Shaft seals SP consist of a steel insert covered with rubber material. These shaft seals are also self-retaining in a suitable housing, which must be designed with a correspondingly larger length. The high contact pressure of the seal lip on the shaft surface provides excellent protection against contamination where frictional forces are of secondary importance. The designation of the shaft seal in the catalog may differ slightly from that marked on the seal itself, e.g., SP-10×17×3 (catalog) and SP-10 17 3-4 (seal).

Characteristics and designs of shaft seals:

- sizes from 6 mm to 50 mm
- self-retaining in a suitable housing
- longer housing required
- suitable for highly contaminated environments
- maximum running speed 3 m/s

## 34 Shaft seals SP



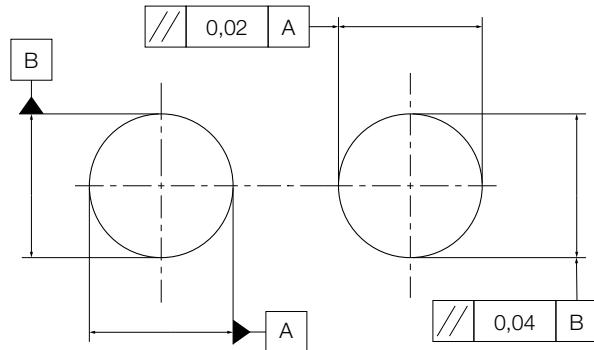
001C3F2F

## 18 Shaft seals SP

| Designation      | Mass<br>m<br>kg | Dimensions |         |          |
|------------------|-----------------|------------|---------|----------|
|                  |                 | Fw<br>mm   | D<br>mm | B1<br>mm |
|                  |                 |            |         |          |
| SP-06×12×02/SEAL | 0.0004          | 6          | 12      | 2        |
| SP-08×15×03/SEAL | 0.0007          | 8          | 15      | 3        |
| SP-10×17×03/SEAL | 0.0009          | 10         | 17      | 3        |
| SP-12×19×03/SEAL | 0.001           | 12         | 19      | 3        |
| SP-14×21×03/SEAL | 0.0011          | 14         | 21      | 3        |
| SP-16×24×03/SEAL | 0.0013          | 16         | 24      | 3        |
| SP-20×28×04/SEAL | 0.0021          | 20         | 28      | 4        |
| SP-25×35×04/SEAL | 0.0026          | 25         | 35      | 4        |
| SP-30×40×04/SEAL | 0.0036          | 30         | 40      | 4        |
| SP-40×52×05/SEAL | 0.0048          | 40         | 52      | 5        |
| SP-50×62×05/SEAL | 0.0105          | 50         | 62      | 5        |

## 1.10.6 Requirements for precision shafts

Shafts play a crucial role in a linear guide system. Their hardness and hardness depth have a direct influence on the rating life. The shaft diameter tolerance affects the operating clearance. For this reason, h6 or h7 tolerances are generally recommended. The dimensional and geometric accuracy of precision shafts are of decisive importance for the accuracy of a linear guide system. The key characteristics are defined in standard ISO 13012:


- roundness:
  - Excessive deviations from roundness can cause uneven load distribution in the linear ball bearing, which in turn can lead to overloading of individual ball rows.
- cylindricity:
  - Cylindricity is particularly important for the guiding accuracy of linear ball bearings, as it captures short-wave geometric deviations along the shaft contour.
- straightness:
  - The straightness of shafts in the unmounted condition is of secondary importance, since shaft deflection in unsupported guides and clamping conditions in supported guides have more impact.

In general, the shaft ends should be provided with a chamfer of approximately 20°. This allows the shafts to be inserted into the linear ball bearing more easily and without damage to the balls or seals.

### 1.10.7 Mounting surfaces and shaft alignment

To ensure smooth running of the linear bearing slide and to prevent additional loads that could shorten the rating life, the two shafts should exhibit the highest possible degree of parallelism.

35 Maximum tolerable deviations



001B6B57

This value applies to both supported and unsupported shafts. It also serves as a reference when defining the mounting surfaces for shaft supports or shaft blocks. Shafts with axial threads enable quick installation and easy alignment.

## 1.11 Installation

Expert knowledge and cleanliness are essential when installing linear bearings to ensure that the bearings function correctly and do not fail prematurely. As precision products, linear ball bearings must be handled with corresponding care. In particular, this involves selecting the proper installation procedures and using the appropriate tools.

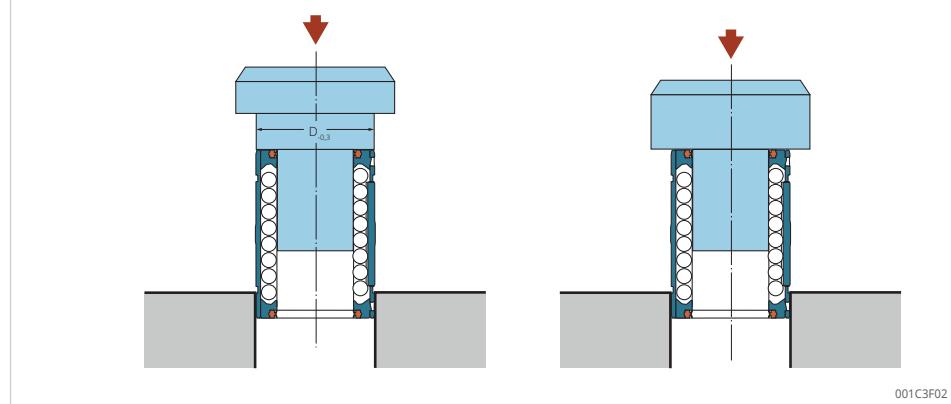
### 1.11.1 Preparations

Carry out installation in a dust-free, dry environment. Before installing the bearings, prepare all necessary parts, tools, and auxiliary equipment.

Thoroughly clean all components of the linear guide (housing, shafts, etc.), remove any burrs, and check dimensional and geometric accuracy. The bearings will only run correctly if the required tolerances are maintained.

Do not remove the bearings from their original packaging until immediately before installation to avoid contamination.

The corrosion-inhibiting preservative applied to factory-new bearings generally does not need to be removed. Only for linear ball bearings of the compact range with self-holding functionality the corrosion-inhibiting preservative should be removed from the outer surface.


When using special greases that are not compatible with the corrosion-inhibiting preservative, the bearings must be carefully washed and dried before installation to ensure that the lubricating properties of the grease are not impaired.

### 1.11.2 Installing linear ball bearings

Installing a linear ball bearing into a chamfered housing bore is straightforward and requires no special force. Linear ball bearings with small to medium diameters can be inserted by hand. If greater force is required for installation, the use of a mechanical press is recommended. When installing linear ball bearings of the standard range that are secured against rotation by means of a grease fitting, for example, care must be taken to ensure that the lubrication port in the bearing, which also serves as fixation bore, aligns with the corresponding retaining bore in the housing.

It is advisable to place a mandrel between the press and the linear ball bearing. The mandrel, preferably made of plastic, should be designed to guide the bearing accurately and support it fully at the end face, as otherwise the seals may become damaged. Avoid striking the linear ball bearing with a hammer, as this can damage the seals and cage.

36 Mandrel used in non-flush and flush installation of the bearing



Carefully insert the shafts into the lubricated bearings. Ensure that neither the linear bearing nor the seals are damaged and that the shafts maintain the required parallelism. To facilitate alignment, most linear bearing units and shaft blocks feature a reference side with tight tolerances.

Screw connections must comply with state-of-the-art engineering standards. Dimensioning is carried out by the customer. Lateral displacement of components must be prevented, for example through the use of a locating edge or retaining strip.

### 1.11.3 Adjusting the operating clearance

The operating clearance of all linear units in slotted or open designs is adjusted by means of an adjustment screw in the housing. To achieve zero clearance, tighten the adjustment screw until a slight resistance can be felt when the shaft or unit is rotated by hand. Preload of linear bearings can be applied in the same way, using a calibrating shaft whose diameter is reduced by the desired preload amount. Clearance-free or preloaded linear bearings must not be rotated on the shaft after installation, as this may lead to marks or scratches. Secure the adjustment screw using a threadlocker, for example.

When adjusting the clearance, the linear unit must always be mounted on a shaft and must not be subjected to external loads.

## 1.12 Transport and storage

Linear ball bearings must be stored in a cool and dry in-door area and inside its original packing, which should be kept closed until the bearing is needed for use. The storage temperature must not exceed 30 °C and must remain above 0 °C. It must also be ensured that the relative humidity at the storage location does not exceed 60 %. Linear ball bearings must not be stored in the immediate vicinity of a heat source and must be protected from direct sunlight.

Under normal conditions, the linear bearings are coated with a corrosion-inhibiting preservative before packaging and can be stored in their unopened original packaging for up to 4 a (years). Extended storage periods may result in a deterioration of the grease's lubricating properties inside the bearing. In such cases, the old grease must be replaced with the required quantity of fresh grease before use. Bearings with seals, when stored for longer periods, may be found to have a higher initial starting friction than new bearings.



If linear ball bearings remain stationary for an extended period while exposed to external vibrations, micro-movements in the contact zone between the rolling elements and raceways can cause surface damage. This, in turn, leads to a significant increase in running noise and may result in premature failure due to material fatigue. Such damage must therefore be avoided, for example by isolating the bearings from external vibrations and taking suitable precautions during transport.

## 1.13 Maintenance

### 1.13.1 Preventive maintenance

To prevent contaminants from adhering to the shafts, the shafts must be cleaned regularly with a cleaning stroke. Schaeffler recommends performing a cleaning stroke 2 times a day, or at least every 8 h, over the entire travel length. This removes contaminant particles and applies a fresh lubricating film to the shafts, providing continuous protection against corrosion.

## 2 Technical principles for linear plain bearings and units

### 2.1 Load rating and rating life

For linear plain bearings, the static load rating  $C_0$  applies at standstill or during occasional adjustment movements. In addition, the static load rating  $C_0$  must also be taken into account if a dynamically loaded linear plain bearing is subjected to high shock loads. The static load rating  $C_0$  indicates the load that a linear plain bearing can support without exceeding a defined deformation of the sliding layer, assuming that the surrounding components exhibit sufficient rigidity.

- !** The screw connections must be checked for adequate safety. When installing linear guides overhead, higher safety factors should be applied.
- !** Load ratings always depend on the underlying definition, which means that dynamic load ratings specified by different manufacturers are not directly comparable.

#### 2.1.1 Service life

In practice, the service life of a linear plain bearing depends on the following factors:

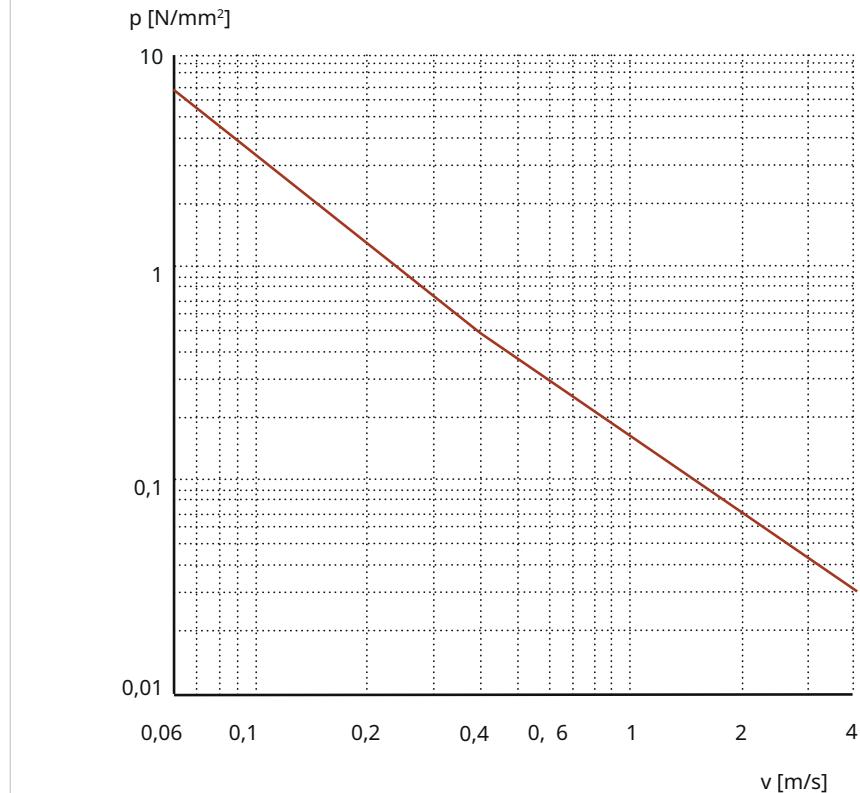
- surface pressure
- positive or negative effects due to increasing surface adaptation during operation in the mixed friction or dry friction range
- bearing clearance
- increase in bearing friction caused by:
  - progressive wear of the sliding surfaces
  - plastic deformation
  - material fatigue at the sliding surface

Additional influencing factors include contamination, corrosion, high-frequency loads or load cycles, and shock loads. Depending on the application and the sliding contact surface used, varying degrees of wear or increase in friction may be permissible.

#### 2.1.2 Selecting linear plain bearings using the pv-diagram

A suitable method for checking bearing size is the use of the pv-diagram. The value  $p$  represents the specific bearing load, and  $v$  represents the mean sliding speed. It can generally be assumed that the rating life of a plain bearing is sufficient if the combination of the calculated  $p$  and  $v$  values lies below the red line.

f41


$$p = \frac{P}{2 \cdot F_w \cdot C_4}$$

f42

$$v = \frac{S_{sin} \cdot n}{30000}$$

|                         |                   |                                               |
|-------------------------|-------------------|-----------------------------------------------|
| $C_4$                   | mm                | Width of the sliding surfaces (2 per bearing) |
| $F_w$                   | mm                | Bore diameter of the linear plain bearing     |
| $n$                     | $\text{min}^{-1}$ | Stroke frequency                              |
| $P$                     | Nmm               | Equivalent dynamic bearing load               |
| $p$                     | $\text{N/mm}^2$   | specific bearing load                         |
| $S_{\text{sin}}$        | mm                | Single stroke length                          |
| $v$                     | m/s               | mean sliding speed                            |
| $2 \cdot F_w \cdot C_4$ | -                 | Load index                                    |

37 pv-diagram for linear plain bearings



001B6B5B

## 2.2 Influence of shaft hardness

As a rule, shafts for plain bearings are made from soft carbon steels with a ground surface finish. The surface roughness  $R_a$  should be around  $0.4 \mu\text{m}$ . For applications with higher requirements, hardened sliding surfaces with a surface hardness of at least 50 HRC, or surfaces coated with materials such as hard chromium, can be advantageous. In such cases, the  $R_a$  value should be around  $0.3 \mu\text{m}$ . A higher surface quality also improves running behavior, while lower quality leads to increased wear.

## 2.3 Friction

The friction behavior of linear plain bearings primarily depends on the bearing load, sliding speed, and lubrication conditions. In addition, the surface quality of the mating sliding surface and the operating temperature are important factors. For linear plain bearings operating under dry conditions, the coefficient of friction typically lies between 0.17 and 0.21. The lowest friction values are generally obtained at high specific bearing loads and low sliding speeds. Under

particularly unfavorable conditions or at low loads, the specified upper limits may even be exceeded. The sliding material is characterized by a static coefficient of friction that is only slightly higher than the dynamic coefficient of friction, meaning stick-slip effects are avoided. Linear plain bearings fitted with additional external shaft seals exhibit higher friction values.

## 2.4 Lubrication

Linear plain bearings can be operated either dry or with lubrication. In many applications, it is advisable to fill the bearings with grease to provide corrosion protection and improve sealing performance. Particularly suitable are corrosion-inhibiting, water-repellent lithium soap greases of normal consistency. Under no circumstances should greases containing molybdenum disulfide or other solid lubricants be used. The quantity of grease and the relubrication intervals depend on the specific application.

## 2.5 Temperature range

The recommended temperature range for continuous operation of linear plain bearings is between  $-40^{\circ}\text{C}$  and  $+80^{\circ}\text{C}$ ; temperatures of up to  $120^{\circ}\text{C}$  are permissible for short periods. However, it must be noted that the mechanical strength of the plastic is temperature-dependent, decreasing from 100 % at room temperature to approximately 30 % at  $100^{\circ}\text{C}$ .

## 2.6 Tolerances

To ensure full interchangeability with linear ball bearings, the external dimensions and tolerances of linear plain bearings correspond to those of the equivalent linear ball bearings. Only the radial clearance is significantly larger than that of linear ball bearings, which is in line with recommendations for plain bearings. The values in the table apply to shaft tolerance h7 and housing tolerance H7.

Increased wear may occur during the running in of linear plain bearings, resulting in a further increase in radial clearance.

■ 19 Radial clearance for linear plain bearings LPBR

| Designation | Radial clearance |               | Load index<br>$\text{mm}^2$ |
|-------------|------------------|---------------|-----------------------------|
|             | U                | L             |                             |
|             | $\mu\text{m}$    | $\mu\text{m}$ |                             |
| LPBR 12     | +175             | +100          | 240                         |
| LPBR 14     | +195             | +120          | 336                         |
| LPBR 16     | +205             | +130          | 384                         |
| LPBR 20     | +210             | +135          | 520                         |
| LPBR 25     | +210             | +135          | 850                         |
| LPBR 30     | +260             | +185          | 1200                        |
| LPBR 40     | +330             | +225          | 1920                        |
| LPBR 50     | +380             | +275          | 2700                        |

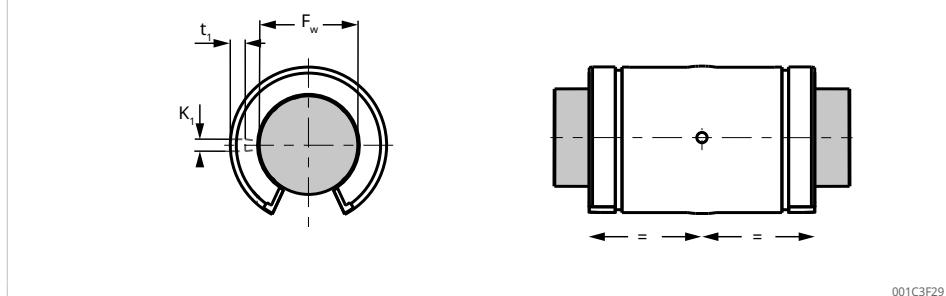
■ 20 Radial clearance for linear plain bearings LPAR

| Designation | Radial clearance |               | Load index<br>$\text{mm}^2$ |
|-------------|------------------|---------------|-----------------------------|
|             | U                | L             |                             |
|             | $\mu\text{m}$    | $\mu\text{m}$ |                             |
| LPAR 5      | +110             | +55           | 80                          |
| LPAR 8      | +110             | +55           | 144                         |
| LPAR 12     | +160             | +110          | 264                         |

| Designation | Radial clearance |         | Load index<br>mm <sup>2</sup> |
|-------------|------------------|---------|-------------------------------|
|             | U<br>µm          | L<br>µm |                               |
|             |                  |         |                               |
| LPAR 16     | +160             | +110    | 416                           |
| LPAR 20     | +165             | +110    | 680                           |
| LPAR 25     | +165             | +110    | 1100                          |
| LPAR 30     | +165             | +110    | 1500                          |
| LPAR 40     | +165             | +110    | 2160                          |
| LPAR 50     | +165             | +110    | 3200                          |
| LPAR 60     | +220             | +160    | 4800                          |
| LPAR 80     | +220             | +160    | 8320                          |

21 Radial clearance for linear plain bearings LPAT

| Designation | Radial clearance |         | Load rating index<br>mm <sup>2</sup> |
|-------------|------------------|---------|--------------------------------------|
|             | U<br>µm          | L<br>µm |                                      |
|             |                  |         |                                      |
| LPAT 12     | +205             | +130    | 264                                  |
| LPAT 16     | +205             | +130    | 416                                  |
| LPAT 20     | +210             | +135    | 680                                  |
| LPAT 25     | +210             | +135    | 1100                                 |
| LPAT 30     | +205             | +135    | 1500                                 |
| LPAT 40     | +215             | +140    | 2160                                 |
| LPAT 50     | +215             | +140    | 3200                                 |
| LPAT 60     | +275             | +190    | 4800                                 |
| LPAT 80     | +275             | +190    | 8320                                 |


## 2.7 Design of bearing arrangements

Information on the design of bearing arrangements can be found under linear ball bearings ►42|1.10.1. Information on housing tolerances is also provided under linear ball bearings ►43|1.10.2.

### 2.7.1 Bearing fixation

For linear plain bearings of the compact range, no additional axial retention is required when they are installed in a housing with bore diameter  $D_h$  and tolerance J7 or J6. Linear plain bearings of the standard range must be axially retained, preferably using retaining rings and a grease fitting. The position and diameter of the bores in the outside diameter of the bearing are specified in the table below. Further options for axial location are analogous to those used for linear ball bearings ►47|1.10.4.

38 Lubrication ports of linear plain bearings



22 Lubrication ports for linear plain bearings

| Designation      | Dimension            | Matching grease fitting | Grub screw | Straight pin or grooved pin | Slotted pin |
|------------------|----------------------|-------------------------|------------|-----------------------------|-------------|
|                  | <b>K<sub>1</sub></b> | -                       | -          | Ø                           | Ø           |
|                  | <b>mm</b>            |                         |            | <b>mm</b>                   | <b>mm</b>   |
| LPAR 12, LPAT 12 | 3.0                  | VN-LHC 20               | M4         | 3.0                         | 3.0         |
| LPAR 16, LPAT 16 | 3.0                  | VN-LHC 20               | M4         | 3.0                         | 3.0         |
| LPAR 20, LPAT 20 | 3.0                  | VN-LHC 20               | M4         | 3.0                         | 3.0         |
| LPAR 25, LPAT 25 | 3.5                  | VN-LHC 40               | M5         | 3.0                         | 3.5         |
| LPAR 30, LPAT 30 | 3.5                  | VN-LHC 40               | M5         | 3.0                         | 3.5         |
| LPAR 40, LPAT 40 | 3.5                  | VN-LHC 40               | M5         | 3.0                         | 3.5         |
| LPAR 50, LPAT 50 | 4.5                  | VN-LHC 50               | M6         | 4.0                         | 4.5         |
| LPAR 60, LPAT 60 | 6.0                  | VN-LHC 80               | M8         | 6.0                         | 6.0         |
| LPAR 80, LPAT 80 | 8.0                  | VN-LHC 80               | M8         | 8.0                         | 8.0         |

## 2.8 Installation

### 2.8.1 Installation of linear plain bearings

To facilitate installation, the shaft ends and the housing bore should have a chamfer at an angle of approximately 20°. It must be ensured that the shaft has no sharp edges or burrs that could damage the sliding surfaces of the bearing. As with linear ball bearings, the use of a mandrel is recommended for installing linear plain bearings, whether manually or using a mechanical press.

Even in applications where continuous lubrication is not envisaged, it is advisable to carry out lubrication during installation and running in. This reduces the coefficient of friction during the running-in process and increases the rating life of the bearing.

## 3 Linear ball bearings of the compact range

### 3.1 Product design

With their small external dimensions, linear ball bearings of the compact range are particularly suitable for applications with limited installation space and for integration into customer-specific housings. They consist of a plastic cage with hardened steel raceway plates to guide the ball sets. The raceway plates of linear ball bearings LBBR are designed to utilize the full length of the load zone. This results in a very high load rating and a long rating life. All ball recirculations are designed to ensure low-friction and quiet operation.

Sealed linear ball bearings with integrated double lip seals retain the lubricant inside the linear ball bearing and provide optimal protection against external contamination. Sealed designs are lubricated for life and virtually maintenance free under normal ambient and operating conditions.

In applications requiring particularly low-friction linear guides, the linear ball bearings are protected against coarse contaminant particles by non-contact shields.

Additional axial fixation of linear ball bearings LBBR is not required, as the cage ensures the self-holding functionality of the bearings in a suitable housing and under normal conditions. Linear ball bearings LBBR are supplied with a factory pre-lubrication as standard, with the option of relubrication when installed in a suitable housing. For applications in corrosive or particularly harsh environments, the linear bearings are available with balls and raceway plates made of corrosion-resistant steel. In such cases, the suffix HV6 must be specified when ordering. The bearing dimensions correspond to dimension series 1 in accordance with ISO 10285.

39 Linear ball bearings of the compact range LBBR with double lip seal



001B6F3B

Characteristics and designs of linear ball bearings LBBR:

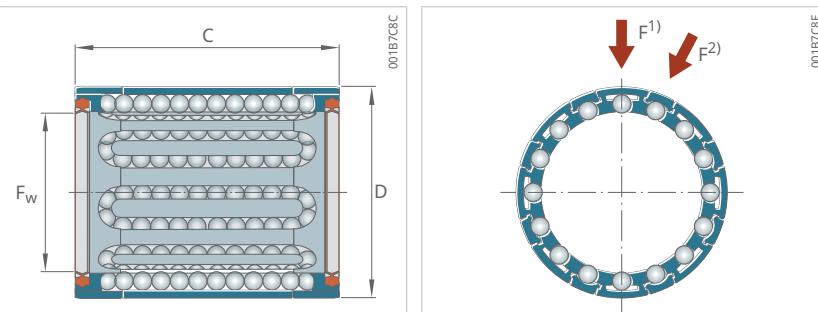
- sizes from 3 mm to 50 mm
- with factory pre-lubrication
- lubricated for life under normal operating conditions
- designs available with 2 double lip seals, 2 shields, or 1 double lip seal and 1 shield
- designs available in rolling bearing steel (standard) or corrosion-resistant steel
- self-holding in housing bores with tolerance J7 or J6
- bearing clearance or preload depends on the shaft and housing bore tolerances

## 3.2 Product tables

### 3.2.1 Explanations

|       |    |                                                                                                                                                                               |
|-------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)   | -  | Load direction for maximum static load ratings for all sizes and maximum dynamic load ratings for sizes 3 to 20 and 50                                                        |
| (2)   | -  | Load direction for maximum dynamic load ratings for sizes 25, 30, and 40. For these sizes, the load directions of the maximum static and maximum dynamic load ratings differ. |
| C     | mm | Length                                                                                                                                                                        |
| C     | N  | Basic dynamic load rating                                                                                                                                                     |
| $C_0$ | N  | Basic static load rating                                                                                                                                                      |
| D     | mm | Outside diameter                                                                                                                                                              |
| $F_w$ | mm | Inscribed diameter of the ball set                                                                                                                                            |
| m     | kg | Mass                                                                                                                                                                          |
| $n_r$ | -  | Number of ball rows                                                                                                                                                           |




### 3.2.2 Linear ball bearings LBBR

| Designation <sup>1) 2)</sup> | m      | F <sub>w</sub> | D  | C <sup>3)</sup> |
|------------------------------|--------|----------------|----|-----------------|
| -                            | kg     | mm             | mm | mm              |
| LBBR 3                       | 0.0007 | 3              | 7  | 10              |
| LBBR 3-2LS                   | 0.0007 | 3              | 7  | 10              |
| LBBR 4                       | 0.0010 | 4              | 8  | 12              |
| LBBR 4-2LS                   | 0.0010 | 4              | 8  | 12              |
| LBBR 5                       | 0.0020 | 5              | 10 | 15              |
| LBBR 5-2LS                   | 0.0020 | 5              | 10 | 15              |
| LBBR 6 A                     | 0.0060 | 6              | 12 | 22              |
| LBBR 6 A-2LS                 | 0.0060 | 6              | 12 | 22              |
| LBBR 8                       | 0.0070 | 8              | 15 | 24              |
| LBBR 8-2LS                   | 0.0070 | 8              | 15 | 24              |
| LBBR 10                      | 0.0110 | 10             | 17 | 26              |
| LBBR 10-2LS                  | 0.0110 | 10             | 17 | 26              |
| LBBR 12                      | 0.0120 | 12             | 19 | 28              |
| LBBR 12-2LS                  | 0.0120 | 12             | 19 | 28              |
| LBBR 14                      | 0.0130 | 14             | 21 | 28              |
| LBBR 14-2LS                  | 0.0130 | 14             | 21 | 28              |
| LBBR 16                      | 0.0180 | 16             | 24 | 30              |
| LBBR 16-2LS                  | 0.0180 | 16             | 24 | 30              |
| LBBR 20                      | 0.0210 | 20             | 28 | 30              |
| LBBR 20-2LS                  | 0.0210 | 20             | 28 | 30              |
| LBBR 25                      | 0.0470 | 25             | 35 | 40              |
| LBBR 25-2LS                  | 0.0470 | 25             | 35 | 40              |
| LBBR 30                      | 0.0700 | 30             | 40 | 50              |
| LBBR 30-2LS                  | 0.0700 | 30             | 40 | 50              |
| LBBR 40                      | 0.1300 | 40             | 52 | 60              |
| LBBR 40-2LS                  | 0.1300 | 40             | 52 | 60              |
| LBBR 50                      | 0.1800 | 50             | 62 | 70              |
| LBBR 50-2LS                  | 0.1800 | 50             | 62 | 70              |

<sup>1)</sup> For LBBR 3, LBBR 4, LBBR 5: supplied with preservative and in packaging units composed of 4 bearings (suffix C004). Lubricate before installation.

<sup>2)</sup> For LBBR 6: lubricated with oil at the factory.

<sup>3)</sup> For LBBR 6: width 22 mm does not correspond to dimension series 1 in accordance with ISO 10285



LBBR with 2 double lip seals

LBBR with 2 double lip seals

| nr | C<br>min. | C<br>max. | C <sub>0</sub><br>min. | C <sub>0</sub><br>max. |
|----|-----------|-----------|------------------------|------------------------|
| -  | N         | N         | N                      | N                      |
| 4  | 60        | 67        | 44                     | 63                     |
| 4  | 60        | 67        | 44                     | 63                     |
| 4  | 75        | 85        | 60                     | 85                     |
| 4  | 75        | 85        | 60                     | 85                     |
| 4  | 170       | 193       | 129                    | 183                    |
| 4  | 170       | 193       | 129                    | 183                    |
| 4  | 335       | 390       | 270                    | 380                    |
| 4  | 335       | 390       | 270                    | 380                    |
| 4  | 490       | 560       | 355                    | 500                    |
| 4  | 490       | 560       | 355                    | 500                    |
| 5  | 585       | 695       | 415                    | 600                    |
| 5  | 585       | 695       | 415                    | 600                    |
| 5  | 695       | 815       | 510                    | 750                    |
| 5  | 695       | 815       | 510                    | 750                    |
| 5  | 710       | 850       | 530                    | 765                    |
| 5  | 710       | 850       | 530                    | 765                    |
| 5  | 930       | 1100      | 630                    | 915                    |
| 5  | 930       | 1100      | 630                    | 915                    |
| 6  | 1160      | 1220      | 800                    | 1020                   |
| 6  | 1160      | 1220      | 800                    | 1020                   |
| 7  | 2080      | 2120      | 1560                   | 1800                   |
| 7  | 2080      | 2120      | 1560                   | 1800                   |
| 8  | 3100      | 3150      | 2700                   | 3050                   |
| 8  | 3100      | 3150      | 2700                   | 3050                   |
| 8  | 5400      | 5500      | 4500                   | 5000                   |
| 8  | 5400      | 5500      | 4500                   | 5000                   |
| 9  | 6950      | 7100      | 6300                   | 6950                   |
| 9  | 6950      | 7100      | 6300                   | 6950                   |

## 4 Linear ball bearing units of the compact range

### 4.1 Product design

A combination of a linear bearing and a housing is referred to as a linear bearing unit. The housing defines the bearing clearance and is crucial to the linear functionality. Schaeffler offers various types of linear bearing units to meet the demand for flexible slide designs in terms of width and length through modular standard products.

Linear bearing units of the compact range consist of a linear bearing and an aluminum housing. These units are extremely compact, cost-effective, and lightweight. All linear bearing units are prelubricated at the factory and ready for operation. The combination of a factory pre-lubrication and integrated double lip seals allows the linear bearing units to operate under normal conditions without relubrication. For this reason, these compact units are not equipped with grease fittings for relubrication. If your application requires relubrication, please contact Schaeffler.

For corrosive or humid environments, Schaeffler offers various linear units fitted with linear ball bearings LBBR made from corrosion-resistant steel. These linear ball bearings are identified by the suffix HV6.

To complete the linear guide system, precision shafts and shaft blocks are also required ►162|13 ►176|14.

Characteristics and designs of linear bearing units:

- sizes from 12 mm to 50 mm, for flexible slide design
- units greased at the factory, lubricated for life under normal operating conditions
- available with double lip seal or shield for low friction
- linear ball bearings available in standard or corrosion-resistant design
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with ISO 4762

LUHR

- aluminum housing extending over the full bearing length

LUJR

- with 2 external shaft seals for harsh ambient conditions
- integrated bearing available in sealed design or with shield
- max. running speed 3 m/s

LTBR

- tandem aluminum housing with 2 integrated bearings

## ④ 40 Linear bearing units of the compact range



001B6F45

## 4.1.1 Linear ball bearing units of the compact range

Linear bearing units of the compact range LUHR and LUJR consist of a closed aluminum housing and an LBBR linear ball bearing with or without seals. Linear bearing units LUJR are identical in design to LUHR, but are fitted with 2 additional external shaft seals for applications with increased contamination exposure and therefore feature a longer housing.

## ④ 41 Linear bearing units of the compact range LUHR



001B6F5C

④ 42 Linear bearing units of the compact range LUJR



001B6F72

Linear bearing units LUHR and LUJR are suitable for constructing a wide range of flexible designs or compact linear slide configurations.

#### 4.1.2 Tandem linear bearing units of the compact range

④ 43 Tandem linear bearing units of the compact range LTBR

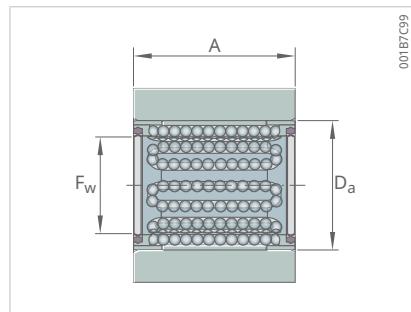


001B6F7E

Tandem linear bearing units of the compact range LTBR consist of 2 LBBR linear ball bearings mounted in an aluminum housing. Tandem linear bearing units with the suffix 2LS have double lip seals facing outward from the housing. Units LTBR are particularly suitable for table or slide constructions of any width and can be mounted from above or below.

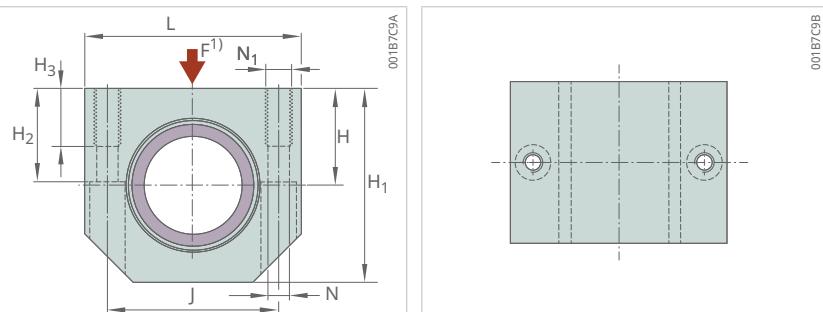
## 4.2 Product tables

### 4.2.1 Explanations


|       |    |                                      |
|-------|----|--------------------------------------|
| (1)   | -  | Load direction for max. load ratings |
| A     | mm | Length                               |
| C     | N  | Basic dynamic load rating            |
| C     | mm | Length                               |
| $C_0$ | N  | Basic static load rating             |
| $D_a$ | mm | Bore diameter                        |
| $F_w$ | mm | Inscribed diameter of the ball set   |
| H     | mm | Center height                        |
| $H_1$ | mm | Height                               |
| $H_2$ | mm | Height                               |
| $H_3$ | mm | Height                               |
| J     | mm | Distance                             |
| $J_1$ | mm | Distance                             |
| L     | mm | Width                                |
| m     | kg | Mass                                 |
| N     | mm | Bore diameter                        |
| $N_1$ | -  | Thread size                          |

## 4.2.2 Linear bearing units

LUHR


with linear ball bearings LBBR

4

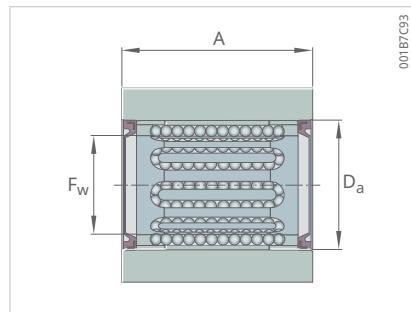


LUHR with double lip seals

| Designation | m    | Fw | A  | Da | H     | H1 | H2 | H3 |
|-------------|------|----|----|----|-------|----|----|----|
|             |      |    |    |    | ±0.01 |    |    |    |
| -           | kg   | mm | mm | mm | mm    | mm | mm | mm |
| LUHR 12     | 0.08 | 12 | 28 | 19 | 17    | 33 | 16 | 11 |
| LUHR 12-2LS | 0.08 | 12 | 28 | 19 | 17    | 33 | 16 | 11 |
| LUHR 16     | 0.10 | 16 | 30 | 24 | 19    | 38 | 18 | 11 |
| LUHR 16-2LS | 0.10 | 16 | 30 | 24 | 19    | 38 | 18 | 11 |
| LUHR 20     | 0.14 | 20 | 30 | 28 | 23    | 45 | 22 | 13 |
| LUHR 20-2LS | 0.14 | 20 | 30 | 28 | 23    | 45 | 22 | 13 |
| LUHR 25     | 0.25 | 25 | 40 | 35 | 27    | 54 | 26 | 18 |
| LUHR 25-2LS | 0.25 | 25 | 40 | 35 | 27    | 54 | 26 | 18 |
| LUHR 30     | 0.37 | 30 | 50 | 40 | 30    | 60 | 29 | 18 |
| LUHR 30-2LS | 0.37 | 30 | 50 | 40 | 30    | 60 | 29 | 18 |
| LUHR 40     | 0.74 | 40 | 60 | 52 | 39    | 76 | 38 | 22 |
| LUHR 40-2LS | 0.74 | 40 | 60 | 52 | 39    | 76 | 38 | 22 |
| LUHR 50     | 1.19 | 50 | 70 | 62 | 47    | 92 | 46 | 26 |
| LUHR 50-2LS | 1.19 | 50 | 70 | 62 | 47    | 92 | 46 | 26 |

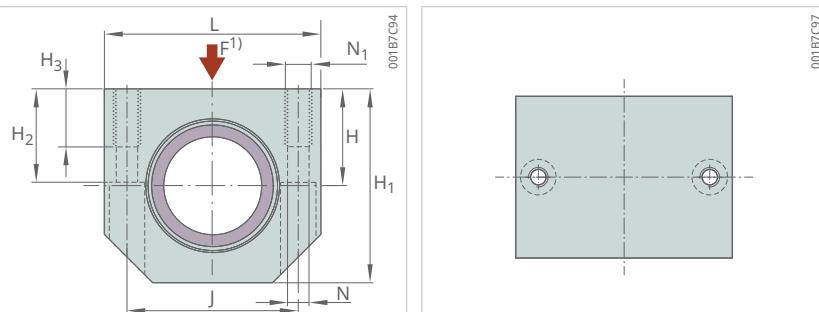


LUHR with double lip seals


LUHR with double lip seals

| L<br>mm | J<br>mm | N<br>mm | N <sub>1</sub><br>- | C    |      | C <sub>0</sub> |      |
|---------|---------|---------|---------------------|------|------|----------------|------|
|         |         |         |                     | min. | max. | N              | N    |
| 40      | 29      | 4.3     | M5                  | 695  | 815  | 510            | 750  |
| 40      | 29      | 4.3     | M5                  | 695  | 815  | 510            | 750  |
| 45      | 34      | 4.3     | M5                  | 930  | 1100 | 630            | 915  |
| 45      | 34      | 4.3     | M5                  | 930  | 1100 | 630            | 915  |
| 53      | 40      | 5.3     | M6                  | 1160 | 1220 | 800            | 1020 |
| 53      | 40      | 5.3     | M6                  | 1160 | 1220 | 800            | 1020 |
| 62      | 48      | 6.6     | M8                  | 2120 | 2080 | 1560           | 1800 |
| 62      | 48      | 6.6     | M8                  | 2120 | 2080 | 1560           | 1800 |
| 67      | 53      | 6.6     | M8                  | 3150 | 3100 | 2700           | 3050 |
| 67      | 53      | 6.6     | M8                  | 3150 | 3100 | 2700           | 3050 |
| 87      | 69      | 8.4     | M10                 | 5500 | 5400 | 4500           | 5000 |
| 87      | 69      | 8.4     | M10                 | 5500 | 5400 | 4500           | 5000 |
| 103     | 82      | 10.5    | M12                 | 6950 | 7100 | 6300           | 6950 |
| 103     | 82      | 10.5    | M12                 | 6950 | 7100 | 6300           | 6950 |

### 4.2.3 Linear bearing units LUJR


with linear ball bearings LBBR  
with external shaft seals

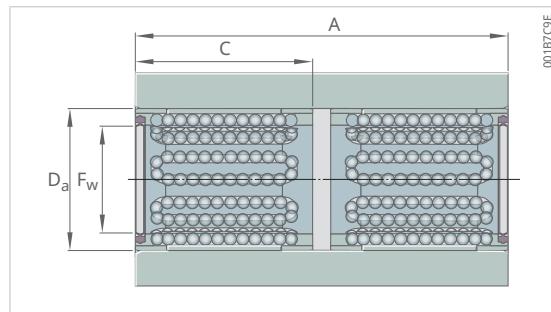
4



LUJR with shaft seals

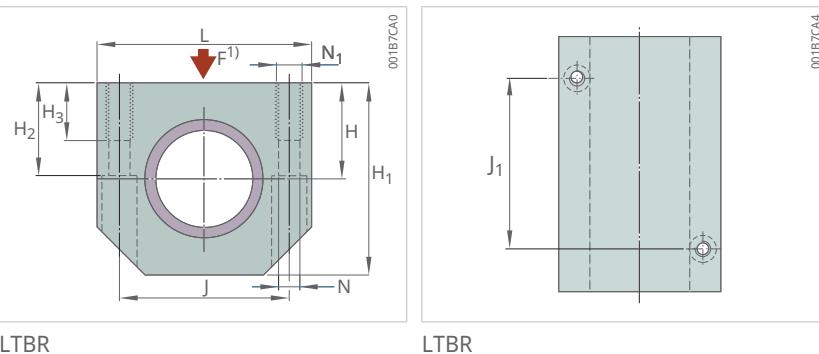
| Designation | m    | F <sub>w</sub> | A  | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|-------------|------|----------------|----|----------------|----|----------------|----------------|----------------|
| -           | kg   | mm             | mm | mm             | mm | mm             | mm             | mm             |
| LUJR 12     | 0.1  | 12             | 35 | 19             | 17 | 33             | 16             | 11             |
| LUJR 12-2LS | 0.1  | 12             | 35 | 19             | 17 | 33             | 16             | 11             |
| LUJR 16     | 0.12 | 16             | 37 | 24             | 19 | 38             | 18             | 11             |
| LUJR 16-2LS | 0.12 | 16             | 37 | 24             | 19 | 38             | 18             | 11             |
| LUJR 20     | 0.18 | 20             | 39 | 28             | 23 | 45             | 22             | 13             |
| LUJR 20-2LS | 0.18 | 20             | 39 | 28             | 23 | 45             | 22             | 13             |
| LUJR 25     | 0.3  | 25             | 49 | 35             | 27 | 54             | 26             | 18             |
| LUJR 25-2LS | 0.3  | 25             | 49 | 35             | 27 | 54             | 26             | 18             |
| LUJR 30     | 0.44 | 30             | 59 | 40             | 30 | 60             | 29             | 18             |
| LUJR 30-2LS | 0.44 | 30             | 59 | 40             | 30 | 60             | 29             | 18             |
| LUJR 40     | 0.86 | 40             | 71 | 52             | 39 | 76             | 38             | 22             |
| LUJR 40-2LS | 0.86 | 40             | 71 | 52             | 39 | 76             | 38             | 22             |
| LUJR 50     | 1.37 | 50             | 81 | 62             | 47 | 92             | 46             | 26             |
| LUJR 50-2LS | 1.37 | 50             | 81 | 62             | 47 | 92             | 46             | 26             |




LUJR with shaft seals

LUJR with shaft seals

| L<br>mm | J<br>mm | N<br>mm | N1<br>- | C<br>min. | C<br>max. | C <sub>0</sub><br>min. | C <sub>0</sub><br>max. |
|---------|---------|---------|---------|-----------|-----------|------------------------|------------------------|
|         |         |         |         | N         | N         | N                      | N                      |
| 40      | 29      | 4.3     | M5      | 695       | 815       | 510                    | 750                    |
| 40      | 29      | 4.3     | M5      | 695       | 815       | 510                    | 750                    |
| 45      | 34      | 4.3     | M5      | 930       | 1100      | 630                    | 915                    |
| 45      | 34      | 4.3     | M5      | 930       | 1100      | 630                    | 915                    |
| 53      | 40      | 5.3     | M6      | 1160      | 1220      | 800                    | 1020                   |
| 53      | 40      | 5.3     | M6      | 1160      | 1220      | 800                    | 1020                   |
| 62      | 48      | 6.6     | M8      | 2120      | 2080      | 1560                   | 1800                   |
| 62      | 48      | 6.6     | M8      | 2120      | 2080      | 1560                   | 1800                   |
| 67      | 53      | 6.6     | M8      | 3150      | 3100      | 2700                   | 3050                   |
| 67      | 53      | 6.6     | M8      | 3150      | 3100      | 2700                   | 3050                   |
| 87      | 69      | 8.4     | M10     | 5500      | 5400      | 4500                   | 5000                   |
| 87      | 69      | 8.4     | M10     | 5500      | 5400      | 4500                   | 5000                   |
| 103     | 82      | 10.5    | M12     | 6950      | 7100      | 6300                   | 6950                   |
| 103     | 82      | 10.5    | M12     | 6950      | 7100      | 6300                   | 6950                   |


#### 4.2.4 Tandem units LTBR with linear ball bearings LBBR

4

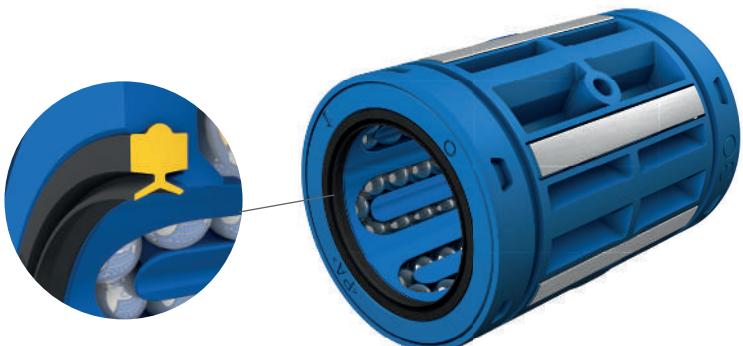


LTBR with 2 double lip seals

| Designation | m    | F <sub>w</sub> | A   | C  | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|-------------|------|----------------|-----|----|----------------|----|----------------|----------------|----------------|
|             |      |                |     |    |                |    |                |                |                |
| -           | kg   | mm             | mm  | mm | mm             | mm | mm             | mm             | mm             |
| LTBR 12     | 0.17 | 12             | 60  | 28 | 19             | 17 | 33             | 16             | 11             |
| LTBR 12-2LS | 0.17 | 12             | 60  | 28 | 19             | 17 | 33             | 16             | 11             |
| LTBR 16     | 0.22 | 16             | 65  | 30 | 24             | 19 | 38             | 18             | 11             |
| LTBR 16-2LS | 0.22 | 16             | 65  | 30 | 24             | 19 | 38             | 18             | 11             |
| LTBR 20     | 0.31 | 20             | 65  | 30 | 28             | 23 | 45             | 22             | 13             |
| LTBR 20-2LS | 0.31 | 20             | 65  | 30 | 28             | 23 | 45             | 22             | 13             |
| LTBR 25     | 0.54 | 25             | 85  | 40 | 35             | 27 | 54             | 26             | 18             |
| LTBR 25-2LS | 0.54 | 25             | 85  | 40 | 35             | 27 | 54             | 26             | 18             |
| LTBR 30     | 0.8  | 30             | 105 | 50 | 40             | 30 | 60             | 29             | 18             |
| LTBR 30-2LS | 0.8  | 30             | 105 | 50 | 40             | 30 | 60             | 29             | 18             |
| LTBR 40     | 1.57 | 40             | 125 | 60 | 52             | 39 | 76             | 38             | 22             |
| LTBR 40-2LS | 1.57 | 40             | 125 | 60 | 52             | 39 | 76             | 38             | 22             |
| LTBR 50     | 2.51 | 50             | 145 | 70 | 62             | 47 | 92             | 46             | 26             |
| LTBR 50-2LS | 2.51 | 50             | 145 | 70 | 62             | 47 | 92             | 46             | 26             |



| J  | J <sub>1</sub> | L   | N    | N <sub>1</sub> | C     |       | C <sub>0</sub> |       |
|----|----------------|-----|------|----------------|-------|-------|----------------|-------|
|    |                |     |      |                | min   | max   | min            | max   |
| mm | mm             | mm  | mm   | -              | N     | N     | N              | N     |
| 29 | 35             | 40  | 4.3  | M5             | 1140  | 1340  | 1020           | 1500  |
| 29 | 35             | 40  | 4.3  | M5             | 1140  | 1340  | 1020           | 1500  |
| 34 | 40             | 45  | 4.3  | M5             | 1530  | 1800  | 1270           | 1830  |
| 34 | 40             | 45  | 4.3  | M5             | 1530  | 1800  | 1270           | 1830  |
| 40 | 45             | 53  | 5.3  | M6             | 1900  | 2000  | 1600           | 2040  |
| 40 | 45             | 53  | 5.3  | M6             | 1900  | 2000  | 1600           | 2040  |
| 48 | 55             | 62  | 6.6  | M8             | 3450  | 3400  | 3150           | 3600  |
| 48 | 55             | 62  | 6.6  | M8             | 3450  | 3400  | 3150           | 3600  |
| 53 | 70             | 67  | 6.6  | M8             | 5200  | 5100  | 5400           | 6100  |
| 53 | 70             | 67  | 6.6  | M8             | 5200  | 5100  | 5400           | 6100  |
| 69 | 85             | 87  | 8.4  | M10            | 9000  | 8800  | 9000           | 10000 |
| 69 | 85             | 87  | 8.4  | M10            | 9000  | 8800  | 9000           | 10000 |
| 82 | 100            | 103 | 10.5 | M12            | 11400 | 11600 | 12700          | 14000 |
| 82 | 100            | 103 | 10.5 | M12            | 11400 | 11600 | 12700          | 14000 |


## 5 Linear ball bearings of the standard range

### 5.1 Product design

#### 5.1.1 Linear ball bearings of the standard range in closed design

5

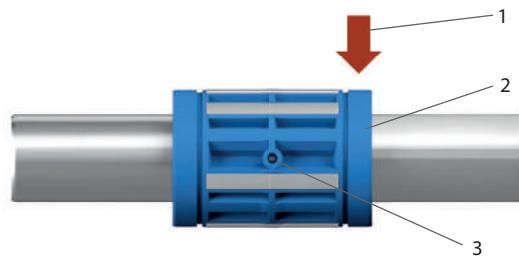
44 Linear ball bearings of the standard range LBCR in D-design with double lip seal



001B6FAB

45 Linear ball bearings of the standard range LBCR in A-design with double lip seal




001C3F09

Linear ball bearings of the standard range LBCR are designed for high loads, featuring optimized raceway length and precise osculation. The straight raceway plates make these bearings ideal for linear bearing applications requiring high rigidity. Bearings LBCR consist of a plastic cage with hardened steel raceway plates, balls, and seals. The cage design and ball recirculation elements are optimized for low-friction and quiet operation, and are virtually maintenance free. Within the diameter range from 5 mm to 80 mm, Schaeffler offers the bearings in either the A-design (black) or the D-design (blue). For harsh environments, each bearing in the standard range is also available in a corrosion-resistant steel design. This is indicated by the suffix HV6 in the bearing designation. The linear bearings are prelubricated at the factory, and sizes 12 mm to 80 mm feature a lubrication port for direct relubrication into the bearing interior. All LBCR bearings correspond to the dimensions of dimension series 3 in accordance with ISO 10285. The operating clearance is determined by the

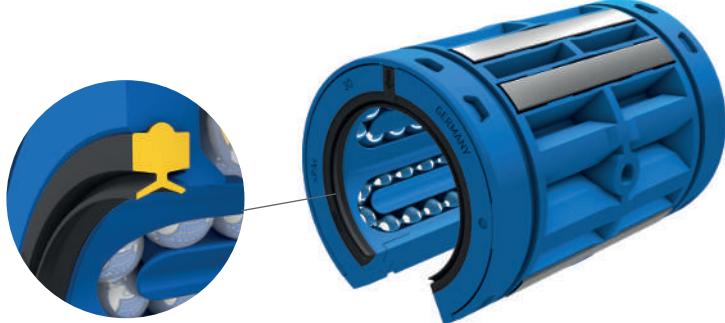
housing and the shaft tolerance. When installed in a slotted housing, the clearance can be adjusted to meet the machine's requirements. Linear ball bearings LBCR must be axially fixed either using grease fittings or retaining rings in accordance with DIN 471. All LBCR bearings are available with double lip seals or non-contact shields. Bearings with the suffix LS are equipped with one shield and one seal on the right-hand side.

46 Position of the double lip seal on linear ball bearings LBCR..-LS

5



001C3F22


|   |                     |   |                 |
|---|---------------------|---|-----------------|
| 1 | Main load direction | 2 | Right-hand side |
| 3 | Lubrication port    |   |                 |

Characteristics and designs of linear ball bearings of the standard range LBCR in closed design:

- sizes from 5 mm to 80 mm
- straight raceway plates to accommodate high loads
- designs available with 2 double lip seals, 2 shields, or 1 double lip seal and 1 shield
- designs available in rolling bearing steel (standard) or corrosion-resistant steel
- with factory pre-lubrication
- ready for operation
- bearing clearance or preload depends on the shaft and housing bore tolerances; adjustable when slotted housings are used
- suitable grease fittings for axial fixation ►44 | 1.10.3

### 5.1.2 Linear ball bearings of the standard range in open design

④47 Linear ball bearings of the standard range LBCT in D-design with double lip seal



001B6FD1

④48 Linear ball bearings of the standard range LBCT in A-design with double lip seal



001C3FOB

Linear ball bearings of the standard range LBCT are open designs used in constructions with supported shafts. They are particularly suitable for applications involving long linear travel distances, where closed designs reach their limits due to shaft deflection. The straight raceway plates provide high rigidity. The bearings feature a longitudinal gap seal to prevent the ingress of contaminants.

When installed in suitable housings, the bearing clearance can be adjusted. Open linear ball bearings LBCT must be fixed to prevent axial and radial movement within the housing.

Characteristics and designs of linear ball bearings of the standard range LBCT in open design:

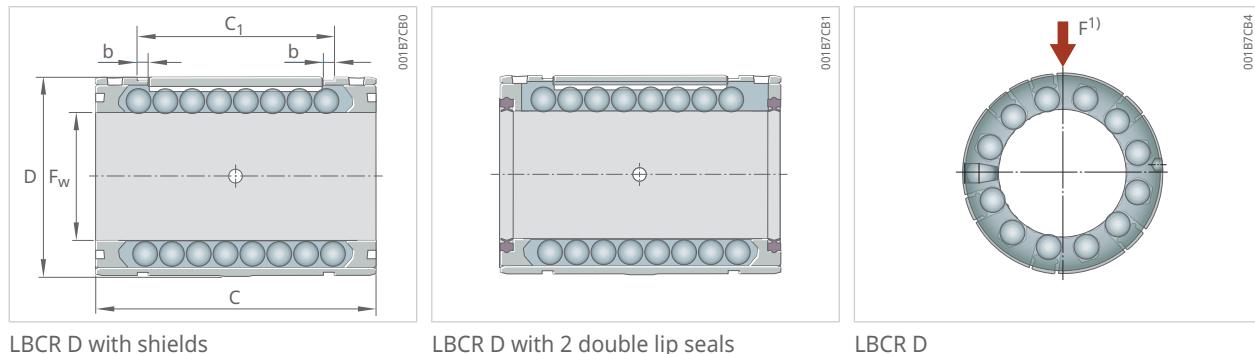
- sizes from 12 mm to 80 mm
- open design for long travel distances combined with supported shafts
- straight raceway plates to accommodate high loads
- designs available with 2 double lip seals, 2 shields, or 1 double lip seal and 1 shield
- designs available in rolling bearing steel (standard) or corrosion-resistant steel

- with factory pre-lubrication
- ready for operation
- bearing clearance or preload depends on the shaft and housing bore tolerances; adjustable
- suitable grease fittings for axial fixation ►44 | 1.10.3

## 5.2 Product tables

### 5.2.1 Explanations

|          |    |                                      |
|----------|----|--------------------------------------|
| (1)      | -  | Load direction for max. load ratings |
| b        | mm | Groove width                         |
| C        | mm | Length                               |
| C        | N  | Basic dynamic load rating            |
| $C_0$    | N  | Basic static load rating             |
| $C_1$    | mm | Distance of grooves                  |
| D        | mm | Outside diameter                     |
| E        | mm | Width of cutout                      |
| $F_w$    | mm | Inscribed diameter of the ball set   |
| m        | kg | Mass                                 |
| $n_r$    | -  | Number of ball rows                  |
| $\alpha$ | °  | Opening angle                        |


## 5.2.2 Linear ball bearings

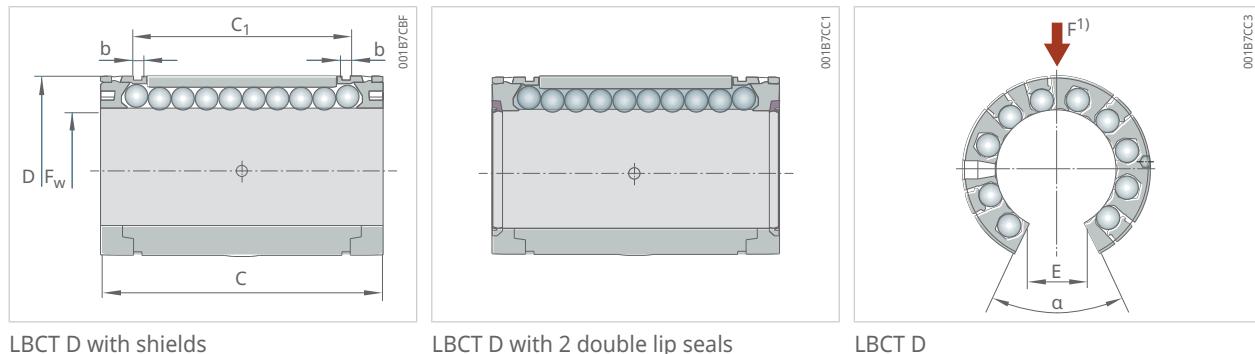
LBCR

closed

| Designation <sup>1)</sup> <sup>2)</sup> | m     | F <sub>w</sub> | D   | C   | C <sub>1</sub> |
|-----------------------------------------|-------|----------------|-----|-----|----------------|
| -                                       | kg    | mm             | mm  | mm  | mm             |
| LBCR 5                                  | 0.005 | 5              | 12  | 22  | 14.2           |
| LBCR 5-2LS                              | 0.005 | 5              | 12  | 22  | 14.2           |
| LBCR 8                                  | 0.009 | 8              | 16  | 25  | 16.2           |
| LBCR 8-2LS                              | 0.009 | 8              | 16  | 25  | 16.2           |
| LBCR 12 D                               | 0.020 | 12             | 22  | 32  | 22.6           |
| LBCR 12 D-2LS                           | 0.020 | 12             | 22  | 32  | 22.6           |
| LBCR 16 D                               | 0.026 | 16             | 26  | 36  | 24.6           |
| LBCR 16 D-2LS                           | 0.026 | 16             | 26  | 36  | 24.6           |
| LBCR 20 D                               | 0.056 | 20             | 32  | 45  | 31.2           |
| LBCR 20 D-2LS                           | 0.056 | 20             | 32  | 45  | 31.2           |
| LBCR 25 D                               | 0.108 | 25             | 40  | 58  | 43.7           |
| LBCR 25 D-2LS                           | 0.108 | 25             | 40  | 58  | 43.7           |
| LBCR 30 D                               | 0.168 | 30             | 47  | 68  | 51.7           |
| LBCR 30 D-2LS                           | 0.168 | 30             | 47  | 68  | 51.7           |
| LBCR 40 D                               | 0.323 | 40             | 62  | 80  | 60.3           |
| LBCR 40 D-2LS                           | 0.323 | 40             | 62  | 80  | 60.3           |
| LBCR 50 A                               | 0.460 | 50             | 75  | 100 | 78.5           |
| LBCR 50 A-2LS                           | 0.460 | 50             | 75  | 100 | 78.5           |
| LBCR 60 A                               | 0.820 | 60             | 90  | 125 | 102.1          |
| LBCR 60 A-2LS                           | 0.820 | 60             | 90  | 125 | 102.1          |
| LBCR 80 A                               | 1.900 | 80             | 120 | 165 | 133            |
| LBCR 80 A-2LS                           | 1.900 | 80             | 120 | 165 | 133            |

<sup>1)</sup> For LBCR 5: lubricated with oil at the factory<sup>2)</sup> For LBCR 5, LBCR 8: no fixing bore or lubrication port




| b<br>min.<br>mm | n <sub>r</sub><br>- | C<br>min.<br>N | C<br>max.<br>N | C <sub>0</sub> |           |
|-----------------|---------------------|----------------|----------------|----------------|-----------|
|                 |                     |                |                | min.<br>N      | max.<br>N |
| 1.1             | 4                   | 280            | 320            | 210            | 300       |
| 1.1             | 4                   | 280            | 320            | 210            | 300       |
| 1.1             | 4                   | 490            | 570            | 355            | 500       |
| 1.1             | 4                   | 490            | 570            | 355            | 500       |
| 1.3             | 5                   | 930            | 1370           | 695            | 1120      |
| 1.3             | 5                   | 930            | 1370           | 695            | 1120      |
| 1.3             | 5                   | 1080           | 1600           | 800            | 1290      |
| 1.3             | 5                   | 1080           | 1600           | 800            | 1290      |
| 1.6             | 6                   | 2200           | 3250           | 1630           | 2650      |
| 1.6             | 6                   | 2200           | 3250           | 1630           | 2650      |
| 1.85            | 6                   | 3100           | 4550           | 2360           | 3800      |
| 1.85            | 6                   | 3100           | 4550           | 2360           | 3800      |
| 1.85            | 6                   | 4800           | 7100           | 3550           | 5700      |
| 1.85            | 6                   | 4800           | 7100           | 3550           | 5700      |
| 2.15            | 6                   | 7650           | 11200          | 5100           | 8300      |
| 2.15            | 6                   | 7650           | 11200          | 5100           | 8300      |
| 2.65            | 7                   | 9650           | 13400          | 7200           | 12200     |
| 2.65            | 7                   | 9650           | 13400          | 7200           | 12200     |
| 3.15            | 7                   | 14600          | 20400          | 11200          | 18000     |
| 3.15            | 7                   | 14600          | 20400          | 11200          | 18000     |
| 4.15            | 7                   | 26500          | 37500          | 19600          | 32000     |
| 4.15            | 7                   | 26500          | 37500          | 19600          | 32000     |

## 5.2.3 Linear ball bearings

LBCT

open design

| Designation   | m     | F <sub>w</sub> | D   | C   | C <sub>1</sub> | b    |
|---------------|-------|----------------|-----|-----|----------------|------|
| -             | kg    | mm             | mm  | mm  | mm             | mm   |
| LBCT 12 D     | 0.016 | 12             | 22  | 32  | 22.6           | 1.3  |
| LBCT 12 D-2LS | 0.016 | 12             | 22  | 32  | 22.6           | 1.3  |
| LBCT 16 D     | 0.020 | 16             | 26  | 36  | 24.6           | 1.3  |
| LBCT 16 D-2LS | 0.020 | 16             | 26  | 36  | 24.6           | 1.3  |
| LBCT 20 D     | 0.046 | 20             | 32  | 45  | 31.2           | 1.6  |
| LBCT 20 D-2LS | 0.046 | 20             | 32  | 45  | 31.2           | 1.6  |
| LBCT 25 D     | 0.090 | 25             | 40  | 58  | 43.7           | 1.85 |
| LBCT 25 D-2LS | 0.090 | 25             | 40  | 58  | 43.7           | 1.85 |
| LBCT 30 D     | 0.142 | 30             | 47  | 68  | 51.7           | 1.85 |
| LBCT 30 D-2LS | 0.142 | 30             | 47  | 68  | 51.7           | 1.85 |
| LBCT 40 A     | 0.230 | 40             | 62  | 80  | 60.3           | 2.15 |
| LBCT 40 A-2LS | 0.230 | 40             | 62  | 80  | 60.3           | 2.15 |
| LBCT 50 A     | 0.390 | 50             | 75  | 100 | 78.5           | 2.65 |
| LBCT 50 A-2LS | 0.390 | 50             | 75  | 100 | 78.5           | 2.65 |
| LBCT 60 A     | 0.720 | 60             | 90  | 125 | 102.1          | 3.15 |
| LBCT 60 A-2LS | 0.720 | 60             | 90  | 125 | 102.1          | 3.15 |
| LBCT 80 A     | 1.670 | 80             | 120 | 165 | 133            | 4.15 |
| LBCT 80 A-2LS | 1.670 | 80             | 120 | 165 | 133            | 4.15 |



| E<br>mm | α<br>° | n <sub>r</sub><br>- | C<br>N | C<br>min. | C<br>max. | C <sub>0</sub><br>min. | C <sub>0</sub><br>max. |
|---------|--------|---------------------|--------|-----------|-----------|------------------------|------------------------|
|         |        |                     |        | N         | N         | N                      | N                      |
| 7.6     | 78     | 4                   | 695    | 1220      | 510       | 1020                   |                        |
| 7.6     | 78     | 4                   | 695    | 1220      | 510       | 1020                   |                        |
| 10.4    | 78     | 4                   | 765    | 1500      | 585       | 1370                   |                        |
| 10.4    | 78     | 4                   | 765    | 1500      | 585       | 1370                   |                        |
| 10.8    | 60     | 5                   | 1860   | 3200      | 1340      | 2700                   |                        |
| 10.8    | 60     | 5                   | 1860   | 3200      | 1340      | 2700                   |                        |
| 13.2    | 60     | 5                   | 2700   | 4650      | 2000      | 4000                   |                        |
| 13.2    | 60     | 5                   | 2700   | 4650      | 2000      | 4000                   |                        |
| 14.2    | 50     | 5                   | 4150   | 7200      | 3000      | 6000                   |                        |
| 14.2    | 50     | 5                   | 4150   | 7200      | 3000      | 6000                   |                        |
| 18.7    | 50     | 6                   | 3900   | 9000      | 3550      | 8150                   |                        |
| 18.7    | 50     | 6                   | 3900   | 9000      | 3550      | 8150                   |                        |
| 23.6    | 50     | 6                   | 5850   | 13400     | 5300      | 12200                  |                        |
| 23.6    | 50     | 6                   | 5850   | 13400     | 5300      | 12200                  |                        |
| 29.6    | 54     | 6                   | 8650   | 20400     | 8000      | 18000                  |                        |
| 29.6    | 54     | 6                   | 8650   | 20400     | 8000      | 18000                  |                        |
| 38.4    | 54     | 6                   | 16000  | 37500     | 14000     | 32000                  |                        |
| 38.4    | 54     | 6                   | 16000  | 37500     | 14000     | 32000                  |                        |

## 6 Linear ball bearing units of the standard range

### 6.1 Product design

A comprehensive range of linear bearing units fitted with linear ball bearings from the standard range is available for the flexible design of slide assemblies. These units are the ideal choice for applications requiring flexibility in shaft spacing and slide length. A simpler slide structure can be achieved using tandem units with 2 bearings. A flanged bearing unit is also available, providing additional mounting options.

All open and closed units, with the exception of the flanged bearing units, are made of aluminum. These high precision units have been structurally optimized to ensure high strength and rigidity. Linear bearing units LUCR, LUCS, and LUCT made of die-cast material have a very low weight, minimizing acceleration forces and inertia forces. For applications that require preload, slotted designs are available. In open linear ball bearing units with single bearings, the preload can be adjusted.

All linear bearing units are lubricated at the factory and ready for operation. To provide maximum design flexibility, all linear bearing units can be fitted with linear ball bearings made of bearing steel or corrosion-resistant steel, and are available with either seals or shields. Depending on the diameter, the closed and open units are fitted with linear ball bearings of either the A-design or the D-design.

To complete the linear guide system, precision shafts and shaft blocks are also required ►162|13 ►176|14.

Characteristics and designs of linear bearing units:

- lightweight housing made of die-cast aluminum (LUCR, LUCS, LUCT)
- straight raceway plates to accommodate high loads
- available with 2 double lip seals or 2 shields
- available in bearing steel (standard) or corrosion-resistant steel
- with factory pre-lubrication
- ready for operation
- with grease fitting
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with ISO 4762

LUCR

- closed design

LUCS

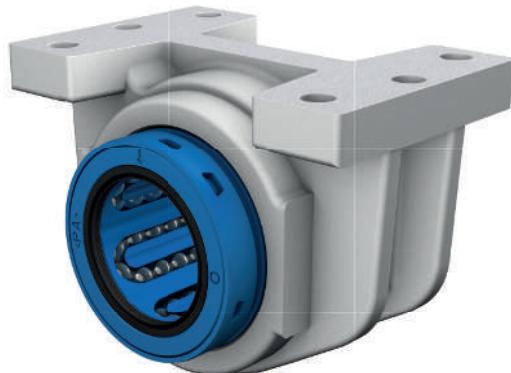
- slotted design for adjusting the bearing clearance

LVCR

- flanged housing with flexible screw mounting facility from the front of the flange or the rear
- high rigidity due to cast-iron housing

LTCR

- tandem unit
- aluminum housing with 2 bearings mounted in series


## LUCT

- open design, adjustable operating clearance

### 6.1.1 Linear ball bearing units of the standard range in closed design

Linear ball bearing units of the standard range LUCR provide flexible design options for the construction of linear slides. With their very low weight, they are ideal for applications involving low mass inertia and high accelerations. Linear ball bearing units LUCR are available for shaft diameters from 8 mm to 80 mm and are fitted with non-self-aligning linear ball bearings LBCR. The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to secure the bearing in the housing. An exception applies to the 8 mm linear bearing unit, where the bearings are axially retained using retaining rings.

49 Linear bearing units LUCR



001B7014

### 6.1.2 Linear ball bearing units of the standard range with slotted housing

Linear bearing units of the standard range LUCS are structurally identical to the LUCR bearing units. In these units, the operating clearance or preload can be adjusted via the slotted housing. However, this adjustment must be carried out with the utmost care, as it can affect the service life.

Linear bearing units LUCS for shaft diameters from 8 mm to 80 mm are fitted with non-self-aligning linear ball bearings LBCR.

The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to secure the bearing in the housing. An exception applies to the 8 mm linear bearing unit, where the bearings are axially retained using retaining rings.

## □ 50 Linear bearing units LUCS with slotted housing



001B701E

### 6.1.3 Linear ball bearing units of the standard range with closed flanged housing

Linear bearing units with flanged housing LVCR provide flexible mounting options. The closed flanged housing of these bearing units is made of cast iron. Flanged units LVCR are available for shaft diameters from 12 mm to 80 mm and are fitted with non-self-aligning linear bearings LBCR.

Each linear ball bearing is axially fixed in the housing by a pin. The flange is machined on both sides, allowing the linear bearing unit to be mounted from either the front or rear face. Linear bearing units with flanged housings are lubricated at the factory and cannot be relubricated.

## □ 51 Linear bearing units with closed flanged housing LVCR



001B707B

### 6.1.4 Tandem linear bearing units of the standard range

Closed tandem linear bearing units LTCR consist of a solid aluminum housing with 2 linear ball bearings of the standard range LBCR mounted in series. Tandem linear bearing units are ideal for linear guide systems of any required width. The units' mounting surface can be bolted from top or bottom side using suitable screws, and are available for shaft diameters from 12 mm to

50 mm. Tandem units are lubricated at the factory and can be relubricated via the grease fitting if required, which also serves to secure the bearing axially and against rotation. Tandem linear bearing units with the suffix 2LS have double lip seals facing outward from the housing.

52 Tandem linear bearing units LTCR



001B7095

### 6.1.5 Linear ball bearing units of the standard range in open design

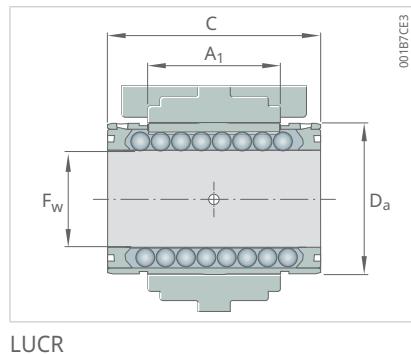
Linear bearing units of the standard range LUCT are open designs and are intended for applications with supported shafts operating under high loads and with long travel distances. Linear bearing units LUCT are available for shaft diameters from 12 mm to 80 mm and are fitted with non-self-aligning linear ball bearings LBCT. The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to secure the bearing in the housing. In addition, the bearing clearance can be adjusted via the hexagon socket screw located near the housing opening.

53 Linear bearing units LUCT in open design



001B702A

## 6.2 Product tables

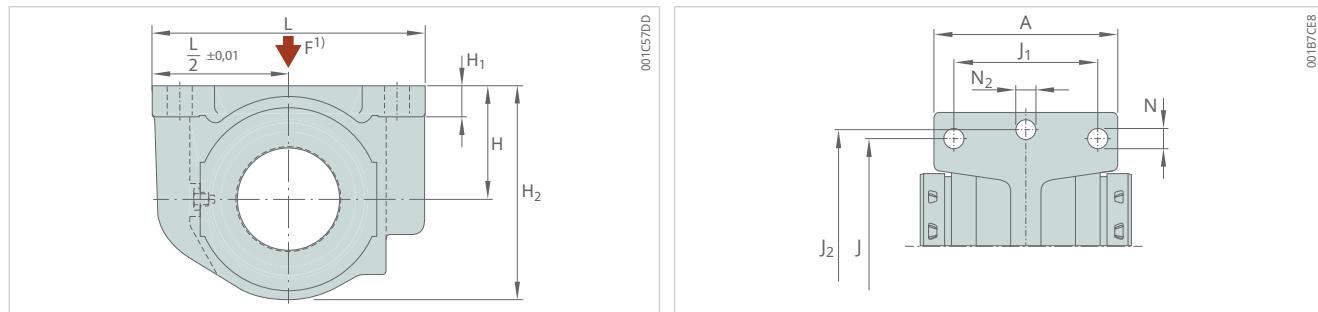

### 6.2.1 Explanations

|                |    |                                      |
|----------------|----|--------------------------------------|
| (1)            | -  | Load direction for max. load ratings |
| A              | mm | Length                               |
| A <sub>1</sub> | mm | Length                               |
| C              | mm | Length                               |
| C              | N  | Basic dynamic load rating            |
| C <sub>0</sub> | N  | Basic static load rating             |
| D <sub>2</sub> | mm | Diameter of centering collar         |
| D <sub>a</sub> | mm | Bore diameter                        |
| E              | mm | Width of cutout                      |
| F <sub>w</sub> | mm | Inscribed diameter of the ball set   |
| H              | mm | Center height                        |
| H <sub>1</sub> | mm | Height                               |
| H <sub>2</sub> | mm | Height                               |
| H <sub>3</sub> | mm | Height                               |
| J              | mm | Distance                             |
| J <sub>1</sub> | mm | Distance                             |
| J <sub>2</sub> | mm | Distance                             |
| L              | mm | Width                                |
| m              | kg | Mass                                 |
| N              | mm | Bore diameter                        |
| N <sub>1</sub> | -  | Thread size                          |
| N <sub>2</sub> | mm | Bore diameter                        |
| α              | °  | Opening angle                        |



## 6.2.2 Linear bearing units LUCR

with linear ball bearings LBCR




6

| Designation <sup>1)</sup> | m     | Fw | A     | A1  | C   | Da  | H  | H1 | H2  |    |
|---------------------------|-------|----|-------|-----|-----|-----|----|----|-----|----|
|                           |       |    |       |     |     |     |    |    | kg  | mm |
| LUCR 8                    | 0.027 | 8  | 27.0  | 14  | 25  | 16  | 15 | 6  | 28  |    |
| LUCR 8-2LS                | 0.027 | 8  | 27.0  | 14  | 25  | 16  | 15 | 6  | 28  |    |
| LUCR 12 D                 | 0.058 | 12 | 31.0  | 20  | 32  | 22  | 18 | 6  | 35  |    |
| LUCR 12 D-2LS             | 0.058 | 12 | 31.0  | 20  | 32  | 22  | 18 | 6  | 35  |    |
| LUCR 16 D                 | 0.076 | 16 | 34.5  | 22  | 36  | 26  | 22 | 7  | 41  |    |
| LUCR 16 D-2LS             | 0.076 | 16 | 34.5  | 22  | 36  | 26  | 22 | 7  | 41  |    |
| LUCR 20 D                 | 0.157 | 20 | 41.0  | 28  | 45  | 32  | 25 | 8  | 48  |    |
| LUCR 20 D-2LS             | 0.157 | 20 | 41.0  | 28  | 45  | 32  | 25 | 8  | 48  |    |
| LUCR 25 D                 | 0.308 | 25 | 52.0  | 40  | 58  | 40  | 30 | 10 | 58  |    |
| LUCR 25 D-2LS             | 0.308 | 25 | 52.0  | 40  | 58  | 40  | 30 | 10 | 58  |    |
| LUCR 30 D                 | 0.450 | 30 | 59.0  | 48  | 68  | 47  | 35 | 10 | 67  |    |
| LUCR 30 D-2LS             | 0.450 | 30 | 59.0  | 48  | 68  | 47  | 35 | 10 | 67  |    |
| LUCR 40 D                 | 0.799 | 40 | 74.0  | 56  | 80  | 62  | 45 | 12 | 85  |    |
| LUCR 40 D-2LS             | 0.799 | 40 | 74.0  | 56  | 80  | 62  | 45 | 12 | 85  |    |
| LUCR 50                   | 1.215 | 50 | 66.0  | 72  | 100 | 75  | 50 | 14 | 99  |    |
| LUCR 50-2LS               | 1.215 | 50 | 66.0  | 72  | 100 | 75  | 50 | 14 | 99  |    |
| LUCR 60                   | 2.160 | 60 | 84.0  | 95  | 125 | 90  | 60 | 18 | 118 |    |
| LUCR 60-2LS               | 2.160 | 60 | 84.0  | 95  | 125 | 90  | 60 | 18 | 118 |    |
| LUCR 80                   | 5.155 | 80 | 113.0 | 125 | 165 | 120 | 80 | 22 | 158 |    |
| LUCR 80-2LS               | 5.155 | 80 | 113.0 | 125 | 165 | 120 | 80 | 22 | 158 |    |

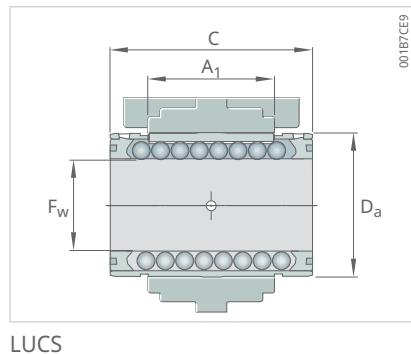
<sup>1)</sup> For size 8: fixation by means of retaining rings in accordance with DIN 471, no lubrication port

<sup>2)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02



LUCR

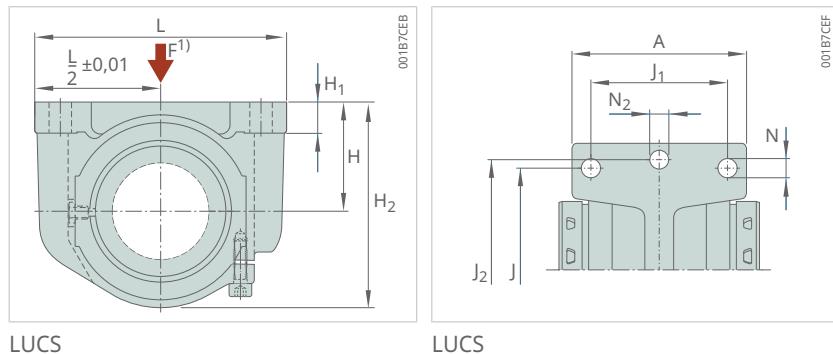
LUCR


| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>2)</sup> | N    | N <sub>2</sub> | C     | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|----------------|-----------------|------|----------------|-------|-------|----------------|----------------|
|     |                |                |                 |      |                | min.  | max.  | min.           | max.           |
| mm  | mm             | mm             | mm              | mm   | mm             | N     | N     | N              | N              |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | 490   | 570   | 355            | 500            |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | 490   | 570   | 355            | 500            |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 930   | 1370  | 695            | 1120           |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 930   | 1370  | 695            | 1120           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 1080  | 1600  | 800            | 1290           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 1080  | 1600  | 800            | 1290           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 2200  | 3250  | 1630           | 2650           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 2200  | 3250  | 1630           | 2650           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 3100  | 4550  | 2360           | 3800           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 3100  | 4550  | 2360           | 3800           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 4800  | 7100  | 3550           | 5700           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 4800  | 7100  | 3550           | 5700           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 7650  | 11200 | 5100           | 8300           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 7650  | 11200 | 5100           | 8300           |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 9650  | 13400 | 7200           | 12200          |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 9650  | 13400 | 7200           | 12200          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 14600 | 20400 | 11200          | 18000          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 14600 | 20400 | 11200          | 18000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 26500 | 37500 | 19600          | 32000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 26500 | 37500 | 19600          | 32000          |

## 6.2.3 Linear bearing units

## LUCS

with linear ball bearings LBCR

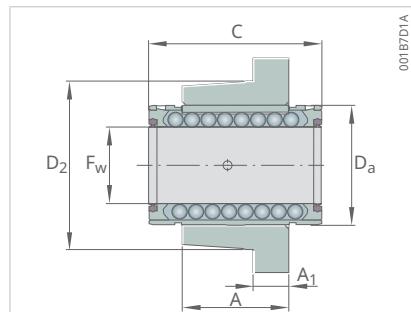

Adjustable operating clearance



6

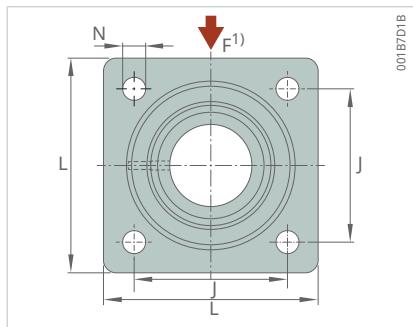
| Designation <sup>1)</sup> | m     | F <sub>w</sub> | A   | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> |    |
|---------------------------|-------|----------------|-----|----------------|-----|----------------|----|----------------|----------------|----|
|                           |       |                |     |                |     |                |    |                | mm             | mm |
| -                         | kg    | mm             | mm  | mm             | mm  | mm             | mm | mm             | mm             | mm |
| LUCS 8                    | 0.028 | 8              | 27  | 14             | 25  | 16             | 15 | 6              | 28             |    |
| LUCS 8-2LS                | 0.028 | 8              | 27  | 14             | 25  | 16             | 15 | 6              | 28             |    |
| LUCS 12 D                 | 0.058 | 12             | 31  | 20             | 32  | 22             | 18 | 6              | 35             |    |
| LUCS 12 D-2LS             | 0.058 | 12             | 31  | 20             | 32  | 22             | 18 | 6              | 35             |    |
| LUCS 16 D                 | 0.077 | 16             | 35  | 22             | 36  | 26             | 22 | 7              | 41             |    |
| LUCS 16 D-2LS             | 0.077 | 16             | 35  | 22             | 36  | 26             | 22 | 7              | 41             |    |
| LUCS 20 D                 | 0.160 | 20             | 41  | 28             | 45  | 32             | 25 | 8              | 48             |    |
| LUCS 20 D-2LS             | 0.160 | 20             | 41  | 28             | 45  | 32             | 25 | 8              | 48             |    |
| LUCS 25 D                 | 0.310 | 25             | 52  | 40             | 58  | 40             | 30 | 10             | 58             |    |
| LUCS 25 D-2LS             | 0.310 | 25             | 52  | 40             | 58  | 40             | 30 | 10             | 58             |    |
| LUCS 30 D                 | 0.452 | 30             | 59  | 48             | 68  | 47             | 35 | 10             | 67             |    |
| LUCS 30 D-2LS             | 0.452 | 30             | 59  | 48             | 68  | 47             | 35 | 10             | 67             |    |
| LUCS 40 D                 | 0.795 | 40             | 74  | 56             | 80  | 62             | 45 | 12             | 85             |    |
| LUCS 40 D-2LS             | 0.795 | 40             | 74  | 56             | 80  | 62             | 45 | 12             | 85             |    |
| LUCS 50                   | 1.217 | 50             | 66  | 72             | 100 | 75             | 50 | 14             | 99             |    |
| LUCS 50-2LS               | 1.217 | 50             | 66  | 72             | 100 | 75             | 50 | 14             | 99             |    |
| LUCS 60                   | 2.191 | 60             | 84  | 95             | 125 | 90             | 60 | 18             | 118            |    |
| LUCS 60-2LS               | 2.191 | 60             | 84  | 95             | 125 | 90             | 60 | 18             | 118            |    |
| LUCS 80                   | 5.110 | 80             | 113 | 125            | 165 | 120            | 80 | 22             | 158            |    |
| LUCS 80-2LS               | 5.110 | 80             | 113 | 125            | 165 | 120            | 80 | 22             | 158            |    |

<sup>1)</sup> For size 8: fixation by means of retaining rings in accordance with DIN 471, no lubrication port<sup>2)</sup> For sizes 50 to 80: tolerance L/2  $\pm 0.02$




LUCS

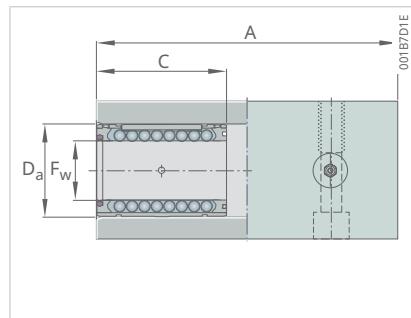
LUCS


| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>2)</sup> | N    | N <sub>2</sub> | C     | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|----------------|-----------------|------|----------------|-------|-------|----------------|----------------|
|     |                |                |                 |      |                | min.  | max.  | min.           | max.           |
| mm  | mm             | mm             | mm              | mm   | mm             | N     | N     | N              | N              |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | 490   | 570   | 355            | 500            |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | 490   | 570   | 355            | 500            |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 930   | 1370  | 695            | 1120           |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 930   | 1370  | 695            | 1120           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 1080  | 1600  | 800            | 1290           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 1080  | 1600  | 800            | 1290           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 2200  | 3250  | 1630           | 2650           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 2200  | 3250  | 1630           | 2650           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 3100  | 4550  | 2360           | 3800           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 3100  | 4550  | 2360           | 3800           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 4800  | 7100  | 3550           | 5700           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 4800  | 7100  | 3550           | 5700           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 7650  | 11200 | 5100           | 8300           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 7650  | 11200 | 5100           | 8300           |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 9650  | 13400 | 7200           | 12200          |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 9650  | 13400 | 7200           | 12200          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 14600 | 20400 | 11200          | 18000          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 14600 | 20400 | 11200          | 18000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 26500 | 37500 | 19600          | 32000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 26500 | 37500 | 19600          | 32000          |

### 6.2.4 Flanged units LVCR with linear ball bearings LBCR



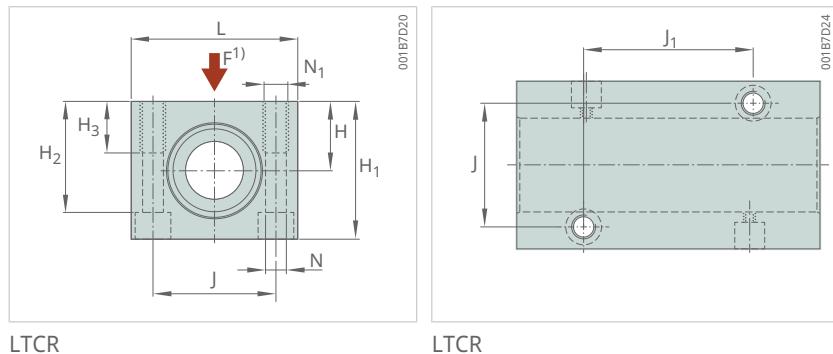
LVCR with 2 double lip seals


| Designation   | m      | F <sub>w</sub> | A   | A <sub>1</sub> | C   | D <sub>a</sub> | D <sub>2</sub> |
|---------------|--------|----------------|-----|----------------|-----|----------------|----------------|
|               |        |                |     |                |     |                | 0<br>-0.5      |
| -             | kg     | mm             | mm  | mm             | mm  | mm             | mm             |
| LVCR 12       | 0.117  | 12             | 20  | 8              | 32  | 22             | 32             |
| LVCR 12 D-2LS | 0.117  | 12             | 20  | 8              | 32  | 22             | 32             |
| LVCR 16 D     | 0.171  | 16             | 22  | 8              | 36  | 26             | 38             |
| LVCR 16 D-2LS | 0.171  | 16             | 22  | 8              | 36  | 26             | 38             |
| LVCR 20 D     | 0.326  | 20             | 28  | 10             | 45  | 32             | 46             |
| LVCR 20 D-2LS | 0.326  | 20             | 28  | 10             | 45  | 32             | 46             |
| LVCR 25 D     | 0.676  | 25             | 40  | 12             | 58  | 40             | 58             |
| LVCR 25 D-2LS | 0.676  | 25             | 40  | 12             | 58  | 40             | 58             |
| LVCR 30 D     | 1.032  | 30             | 48  | 14             | 68  | 47             | 66             |
| LVCR 30 D-2LS | 1.032  | 30             | 48  | 14             | 68  | 47             | 66             |
| LVCR 40 D     | 1.973  | 40             | 56  | 16             | 80  | 62             | 90             |
| LVCR 40 D-2LS | 1.973  | 40             | 56  | 16             | 80  | 62             | 90             |
| LVCR 50       | 3.294  | 50             | 72  | 18             | 100 | 75             | 110            |
| LVCR 50-2LS   | 3.294  | 50             | 72  | 18             | 100 | 75             | 110            |
| LVCR 60       | 5.920  | 60             | 95  | 22             | 125 | 90             | 135            |
| LVCR 60-2LS   | 5.920  | 60             | 95  | 22             | 125 | 90             | 135            |
| LVCR 80       | 13.300 | 80             | 125 | 25             | 165 | 120            | 180            |
| LVCR 80-2LS   | 13.300 | 80             | 125 | 25             | 165 | 120            | 180            |



LVCR with 2 double lip seals

| J   | L   | N    | C     | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|-----|------|-------|-------|----------------|----------------|
|     |     |      | min.  | max.  | min.           | max.           |
| mm  | mm  | mm   | N     | N     | N              | N              |
| 30  | 42  | 5.5  | 930   | 1370  | 695            | 1120           |
| 30  | 42  | 5.5  | 930   | 1370  | 695            | 1120           |
| 35  | 50  | 5.5  | 1080  | 1600  | 800            | 1290           |
| 35  | 50  | 5.5  | 1080  | 1600  | 800            | 1290           |
| 42  | 60  | 6.6  | 2200  | 3250  | 1630           | 2650           |
| 42  | 60  | 6.6  | 2200  | 3250  | 1630           | 2650           |
| 54  | 74  | 6.6  | 3100  | 4550  | 2360           | 3800           |
| 54  | 74  | 6.6  | 3100  | 4550  | 2360           | 3800           |
| 60  | 84  | 9.0  | 4800  | 7100  | 3550           | 5700           |
| 60  | 84  | 9.0  | 4800  | 7100  | 3550           | 5700           |
| 78  | 108 | 11.0 | 7650  | 11200 | 5100           | 8300           |
| 78  | 108 | 11.0 | 7650  | 11200 | 5100           | 8300           |
| 98  | 130 | 11.0 | 9650  | 13400 | 7200           | 12200          |
| 98  | 130 | 11.0 | 9650  | 13400 | 7200           | 12200          |
| 120 | 160 | 13.5 | 14600 | 20400 | 11200          | 18000          |
| 120 | 160 | 13.5 | 14600 | 20400 | 11200          | 18000          |
| 155 | 200 | 13.5 | 26500 | 37500 | 19600          | 32000          |
| 155 | 200 | 13.5 | 26500 | 37500 | 19600          | 32000          |


### 6.2.5 Tandem units LTCR with linear ball bearings LBCR

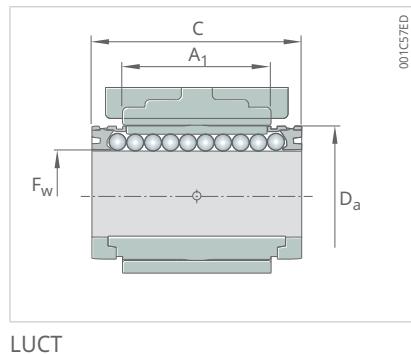


LTCR with 2 double lip seals

6

| Designation   | m     | F <sub>w</sub> | A   | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|---------------|-------|----------------|-----|-----|----------------|----|----------------|----------------|----------------|
|               |       |                |     |     |                |    |                |                |                |
| -             | kg    | mm             | mm  | mm  | mm             | mm | mm             | mm             | mm             |
| LTCR 12 D     | 0.248 | 12             | 76  | 32  | 22             | 18 | 35.0           | 27.0           | 13             |
| LTCR 12 D-2LS | 0.248 | 12             | 76  | 32  | 22             | 18 | 35.0           | 27.0           | 13             |
| LTCR 16 D     | 0.387 | 16             | 84  | 36  | 26             | 22 | 41.5           | 33.0           | 13             |
| LTCR 16 D-2LS | 0.387 | 16             | 84  | 36  | 26             | 22 | 41.5           | 33.0           | 13             |
| LTCR 20 D     | 0.696 | 20             | 104 | 45  | 32             | 25 | 49.5           | 39.5           | 18             |
| LTCR 20 D-2LS | 0.696 | 20             | 104 | 45  | 32             | 25 | 49.5           | 39.5           | 18             |
| LTCR 25 D     | 1.282 | 25             | 130 | 58  | 40             | 30 | 59.5           | 47.0           | 22             |
| LTCR 25 D-2LS | 1.282 | 25             | 130 | 58  | 40             | 30 | 59.5           | 47.0           | 22             |
| LTCR 30 D     | 1.942 | 30             | 152 | 68  | 47             | 35 | 69.5           | 55.0           | 26             |
| LTCR 30 D-2LS | 1.942 | 30             | 152 | 68  | 47             | 35 | 69.5           | 55.0           | 26             |
| LTCR 40 D     | 3.683 | 40             | 176 | 80  | 62             | 45 | 89.5           | 71.0           | 34             |
| LTCR 40 D-2LS | 3.683 | 40             | 176 | 80  | 62             | 45 | 89.5           | 71.0           | 34             |
| LTCR 50       | 5.970 | 50             | 224 | 100 | 75             | 50 | 99.5           | 81.0           | 34             |
| LTCR 50-2LS   | 5.970 | 50             | 224 | 100 | 75             | 50 | 99.5           | 81.0           | 34             |

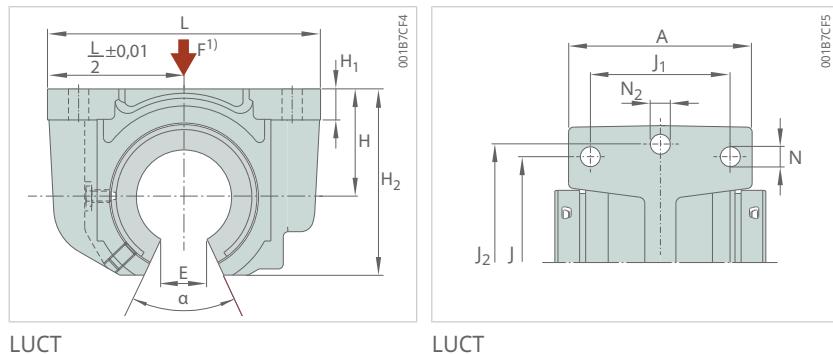



| J   | J <sub>1</sub> | L   | N    | N <sub>1</sub> | C     |       | C <sub>0</sub> |       |
|-----|----------------|-----|------|----------------|-------|-------|----------------|-------|
|     |                |     |      |                | min.  | max.  | min.           | max.  |
| mm  | mm             | mm  | mm   | -              | N     | N     | N              | N     |
| 30  | 40             | 42  | 5.3  | M6             | 1500  | 2240  | 1400           | 2240  |
| 30  | 40             | 42  | 5.3  | M6             | 1500  | 2240  | 1400           | 2240  |
| 36  | 45             | 50  | 5.3  | M6             | 1760  | 2600  | 1600           | 2600  |
| 36  | 45             | 50  | 5.3  | M6             | 1760  | 2600  | 1600           | 2600  |
| 45  | 55             | 60  | 6.4  | M8             | 3550  | 5300  | 3250           | 5300  |
| 45  | 55             | 60  | 6.4  | M8             | 3550  | 5300  | 3250           | 5300  |
| 54  | 70             | 74  | 8.4  | M10            | 5000  | 7350  | 4750           | 7650  |
| 54  | 70             | 74  | 8.4  | M10            | 5000  | 7350  | 4750           | 7650  |
| 62  | 85             | 84  | 10.5 | M12            | 7800  | 11600 | 7100           | 11400 |
| 62  | 85             | 84  | 10.5 | M12            | 7800  | 11600 | 7100           | 11400 |
| 80  | 100            | 108 | 13.0 | M16            | 12500 | 18300 | 10200          | 16600 |
| 80  | 100            | 108 | 13.0 | M16            | 12500 | 18300 | 10200          | 16600 |
| 100 | 125            | 130 | 13.0 | M16            | 15600 | 21600 | 14300          | 24500 |
| 100 | 125            | 130 | 13.0 | M16            | 15600 | 21600 | 14300          | 24500 |

## 6.2.6 Linear bearing units

LUCT

with linear ball bearings LBCT

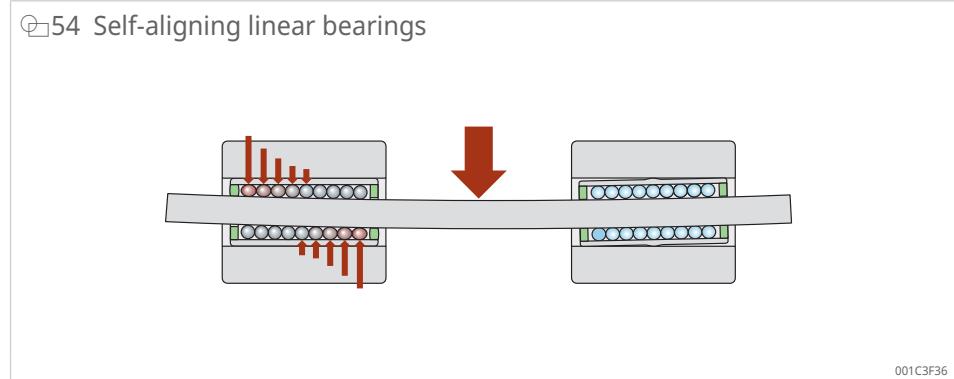

open design



6

| Designation   | m     | F <sub>w</sub> | A   | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> |
|---------------|-------|----------------|-----|----------------|-----|----------------|----|----------------|----------------|
|               |       |                |     |                |     |                |    |                |                |
| -             | kg    | mm             | mm  | mm             | mm  | mm             | mm | mm             | mm             |
| LUCT 12 D     | 0.050 | 12             | 31  | 20             | 32  | 22             | 18 | 6              | 28             |
| LUCT 12 D-2LS | 0.050 | 12             | 31  | 20             | 32  | 22             | 18 | 6              | 28             |
| LUCT 16 D     | 0.065 | 16             | 35  | 22             | 36  | 26             | 22 | 7              | 35             |
| LUCT 16 D-2LS | 0.065 | 16             | 35  | 22             | 36  | 26             | 22 | 7              | 35             |
| LUCT 20 D     | 0.138 | 20             | 41  | 28             | 45  | 32             | 25 | 8              | 42             |
| LUCT 20 D-2LS | 0.138 | 20             | 41  | 28             | 45  | 32             | 25 | 8              | 42             |
| LUCT 25 D     | 0.269 | 25             | 52  | 40             | 58  | 40             | 30 | 10             | 51             |
| LUCT 25 D-2LS | 0.269 | 25             | 52  | 40             | 58  | 40             | 30 | 10             | 51             |
| LUCT 30 D     | 0.396 | 30             | 59  | 48             | 68  | 47             | 35 | 10             | 60             |
| LUCT 30 D-2LS | 0.396 | 30             | 59  | 48             | 68  | 47             | 35 | 10             | 60             |
| LUCT 40       | 0.639 | 40             | 74  | 56             | 80  | 62             | 45 | 12             | 77             |
| LUCT 40-2LS   | 0.639 | 40             | 74  | 56             | 80  | 62             | 45 | 12             | 77             |
| LUCT 50       | 1.055 | 50             | 66  | 72             | 100 | 75             | 50 | 14             | 88             |
| LUCT 50-2LS   | 1.055 | 50             | 66  | 72             | 100 | 75             | 50 | 14             | 88             |
| LUCT 60       | 1.903 | 60             | 84  | 95             | 125 | 90             | 60 | 18             | 105            |
| LUCT 60-2LS   | 1.903 | 60             | 84  | 95             | 125 | 90             | 60 | 18             | 105            |
| LUCT 80       | 4.531 | 80             | 113 | 125            | 165 | 120            | 80 | 22             | 140            |
| LUCT 80-2LS   | 4.531 | 80             | 113 | 125            | 165 | 120            | 80 | 22             | 140            |

<sup>1)</sup> For sizes 50 to 80: tolerance L/2  $\pm 0.02$




| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N    | N <sub>2</sub> | E    | α  | C     | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|----------------|-----------------|------|----------------|------|----|-------|-------|----------------|----------------|
|     |                |                |                 |      |                |      |    | min.  | max.  | min.           | max.           |
| mm  | mm             | mm             | mm              | mm   | mm             | mm   | °  | N     | N     | N              | N              |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 7.6  | 78 | 695   | 1220  | 510            | 1020           |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 7.6  | 78 | 695   | 1220  | 510            | 1020           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 10.4 | 78 | 765   | 1500  | 585            | 1370           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 10.4 | 78 | 765   | 1500  | 585            | 1370           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 10.8 | 60 | 1860  | 3200  | 1340           | 2700           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 10.8 | 60 | 1860  | 3200  | 1340           | 2700           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 13.2 | 60 | 2700  | 4650  | 2000           | 4000           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 13.2 | 60 | 2700  | 4650  | 2000           | 4000           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 14.2 | 50 | 4150  | 7200  | 3000           | 6000           |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 14.2 | 50 | 4150  | 7200  | 3000           | 6000           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 18.7 | 50 | 3900  | 9000  | 3550           | 8150           |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 18.7 | 50 | 3900  | 9000  | 3550           | 8150           |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 23.6 | 50 | 5850  | 13400 | 5300           | 12200          |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 23.6 | 50 | 5850  | 13400 | 5300           | 12200          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 29.6 | 54 | 8650  | 20400 | 8000           | 18000          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 29.6 | 54 | 8650  | 20400 | 8000           | 18000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 38.4 | 54 | 16000 | 37500 | 14000          | 32000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 38.4 | 54 | 16000 | 37500 | 14000          | 32000          |

## 7 Linear ball bearings of the standard range, self-aligning

### 7.1 Product design

Both open and closed designs are available as self-aligning linear ball bearings. Improperly machined mounting surfaces, misaligned shafts, or shaft deflection under high loads can cause internal stresses when the linear bearing system is screwed into place. In such cases, the use of self-aligning linear ball bearings of series LBCD and LBCF is recommended.



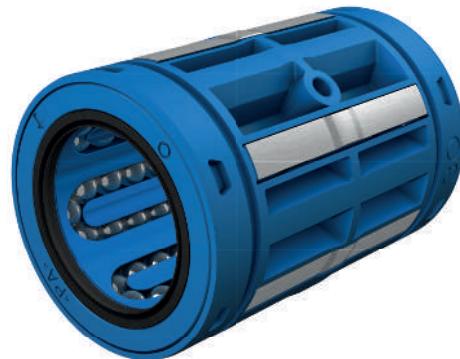
These bearings feature raceway plates with a special profile on the outside. A ground spherical elevation in the center of the raceway plate allows the bearing to tilt by up to  $\pm 30^\circ$ . Self-aligning bearings can significantly reduce both the load conditions and noise generation in many applications. This minimizes peak loads and ultimately extends the rating life of the bearing while lowering maintenance costs.

To ensure effective sealing of the linear bearing, the outside diameter of the cage is slightly reduced. This allows the bearing, including its seals, to follow the tilt concentrically around the shaft. Self-aligning bearings have already proven their effective sealing performance and low-friction operation in numerous applications.

#### 7.1.1 Linear ball bearings of the standard range in closed design

Linear ball bearings of the standard range LBCD are the self-aligning design of the closed linear ball bearing in the standard range LBCR. The self-aligning raceway plate compensates for misalignments of up to  $\pm 30^\circ$ , while the bearing seal maintains optimum contact with the shaft.

Linear ball bearings LBCD are suitable for applications requiring quiet linear motion and smooth running.


As with linear ball bearings LBCR, the operating clearance is determined by the housing and the shaft tolerance, while in slotted housings it can be adjusted to meet the specific machine requirements. Linear ball bearings LBCD must be axially fixed either using grease fittings or retaining rings in accordance with DIN 471.

Characteristics and designs of linear ball bearings LBCD:

- sizes from 12 mm to 50 mm
- tilting angle of  $\pm 30^\circ$  (self-aligning)
- designs available with 2 double lip seals, 2 shields, or 1 seal and 1 shield

- designs available in rolling bearing steel (standard) or corrosion-resistant steel
- with factory pre-lubrication
- ready for operation
- bearing clearance or preload depends on the shaft and housing bore tolerances; adjustable when slotted housings are used
- suitable grease fittings for axial fixation ►44 | 1.10.3

□55 Linear ball bearings of the standard range LBCD in D-design, self-aligning, with double lip seal



7

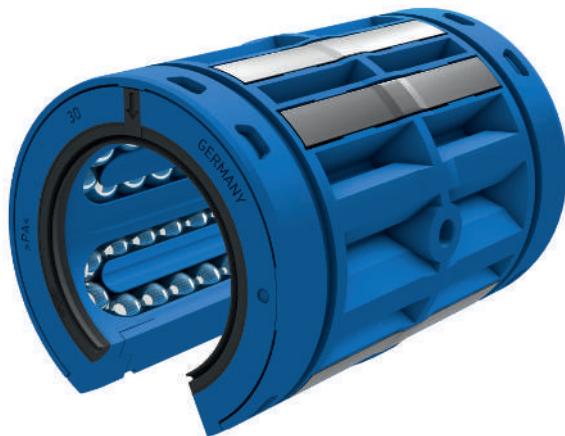
001B6FBB

□56 Linear ball bearings of the standard range LBCD, in A-design, self-aligning, with double lip seal



001C3F07

### 7.1.2 Linear ball bearings of the standard range in open design


Linear ball bearings of the standard range LBCF are the self-aligning version of linear ball bearing LBCT in open design. Capable of compensating misalignments of up to  $\pm 30^\circ$  they are ideal for applications requiring quiet linear motion and smooth running. When used with supported shafts, the linear slides can achieve an almost unlimited stroke. Design LBCF is available in sizes from 12 mm to 50 mm.

When installed in suitable housings, the bearing clearance can be adjusted. Open linear ball bearings of the type LBCF must be fixed to prevent axial and radial movement within the housing. This can be achieved using grease fittings.

Characteristics and designs of linear ball bearings LBCF:

- sizes from 12 mm to 80 mm
- open design for long travel distances combined with supported shafts
- straight raceway plates to accommodate high loads
- designs available with 2 double lip seals, 2 shields, or 1 double lip seal and 1 shield
- designs available in rolling bearing steel (standard) or corrosion-resistant steel
- with factory pre-lubrication
- ready for operation
- bearing clearance or preload depends on the shaft and housing bore tolerances; adjustable
- suitable grease fittings for axial fixation ►44 | 1.10.3

57 Linear ball bearings of the standard range LBCF in D-design, self-aligning, with double lip seal



001B6FE2

58 Linear ball bearings of the standard range LBCF, in A-design, self-aligning, with double lip seal



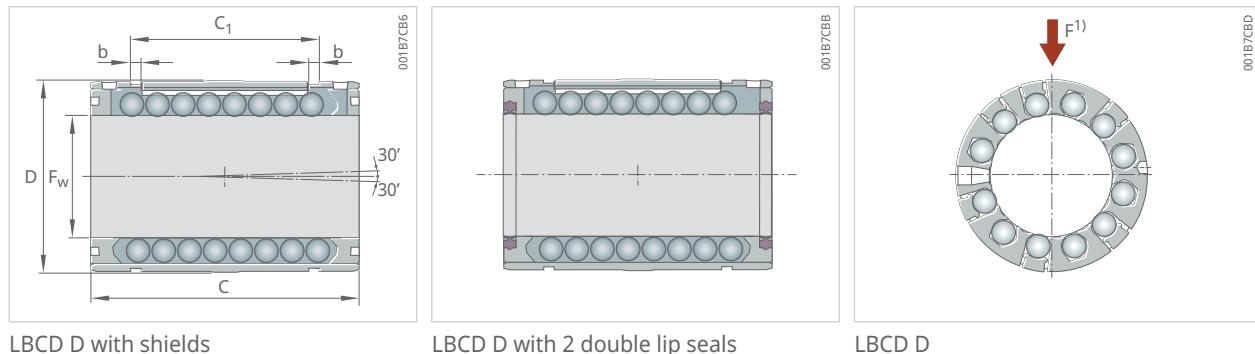
001C3F08

## 7.2 Product tables

### 7.2.1 Explanations

|          |    |                                      |
|----------|----|--------------------------------------|
| (1)      | -  | Load direction for max. load ratings |
| b        | mm | Groove width                         |
| C        | mm | Length                               |
| C        | N  | Basic dynamic load rating            |
| $C_0$    | N  | Basic static load rating             |
| $C_1$    | mm | Distance of grooves                  |
| D        | mm | Outside diameter                     |
| E        | mm | Width of cutout                      |
| $F_w$    | mm | Inscribed diameter of the ball set   |
| m        | kg | Mass                                 |
| $n_r$    | -  | Number of ball rows                  |
| $\alpha$ | °  | Opening angle                        |

## 7.2.2 Linear ball bearings


LBCD

self-aligning

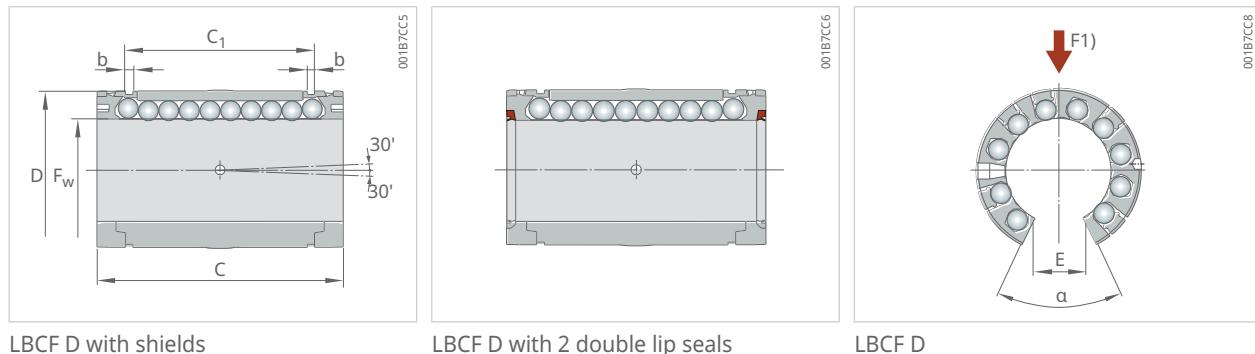
closed

7

| Designation   | m     | F <sub>w</sub> | D  | C   | C <sub>1</sub> |
|---------------|-------|----------------|----|-----|----------------|
| -             | kg    | mm             | mm | mm  | mm             |
| LBCD 12 D     | 0.020 | 12             | 22 | 32  | 22.6           |
| LBCD 12 D-2LS | 0.020 | 12             | 22 | 32  | 22.6           |
| LBCD 16 D     | 0.025 | 16             | 26 | 36  | 24.6           |
| LBCD 16 D-2LS | 0.025 | 16             | 26 | 36  | 24.6           |
| LBCD 20 D     | 0.055 | 20             | 32 | 45  | 31.2           |
| LBCD 20 D-2LS | 0.055 | 20             | 32 | 45  | 31.2           |
| LBCD 25 D     | 0.106 | 25             | 40 | 58  | 43.7           |
| LBCD 25 D-2LS | 0.106 | 25             | 40 | 58  | 43.7           |
| LBCD 30 D     | 0.166 | 30             | 47 | 68  | 51.7           |
| LBCD 30 D-2LS | 0.166 | 30             | 47 | 68  | 51.7           |
| LBCD 40 D     | 0.316 | 40             | 62 | 80  | 60.3           |
| LBCD 40 D-2LS | 0.316 | 40             | 62 | 80  | 60.3           |
| LBCD 50 A     | 0.440 | 50             | 75 | 100 | 78.5           |
| LBCD 50 A-2LS | 0.440 | 50             | 75 | 100 | 78.5           |



| b<br>min.<br>mm | nr<br>- | C<br>min.<br>N | C<br>max.<br>N | C <sub>0</sub> |           |
|-----------------|---------|----------------|----------------|----------------|-----------|
|                 |         |                |                | min.<br>N      | max.<br>N |
| 1.3             | 5       | 800            | 1220           | 570            | 930       |
| 1.3             | 5       | 800            | 1220           | 570            | 930       |
| 1.3             | 5       | 950            | 1400           | 655            | 1060      |
| 1.3             | 5       | 950            | 1400           | 655            | 1060      |
| 1.6             | 6       | 1730           | 2550           | 1120           | 1800      |
| 1.6             | 6       | 1730           | 2550           | 1120           | 1800      |
| 1.85            | 6       | 2600           | 3800           | 1430           | 2320      |
| 1.85            | 6       | 2600           | 3800           | 1430           | 2320      |
| 1.85            | 6       | 3800           | 5600           | 2320           | 3750      |
| 1.85            | 6       | 3800           | 5600           | 2320           | 3750      |
| 2.15            | 6       | 6550           | 9650           | 3350           | 5700      |
| 2.15            | 6       | 6550           | 9650           | 3350           | 5700      |
| 2.65            | 7       | 8000           | 11200          | 4150           | 6950      |
| 2.65            | 7       | 8000           | 11200          | 4150           | 6950      |


## 7.2.3 Linear ball bearings LBCF

self-aligning

open design

7

| Designation   | m     | F <sub>w</sub> | D  | C   | C <sub>1</sub> | b    |
|---------------|-------|----------------|----|-----|----------------|------|
| -             | kg    | mm             | mm | mm  | mm             | mm   |
| LBCF 12 D     | 0.016 | 12             | 22 | 32  | 22.6           | 1.3  |
| LBCF 12 D-2LS | 0.016 | 12             | 22 | 32  | 22.6           | 1.3  |
| LBCF 16 D     | 0.020 | 16             | 26 | 36  | 24.6           | 1.3  |
| LBCF 16 D-2LS | 0.020 | 16             | 26 | 36  | 24.6           | 1.3  |
| LBCF 20 D     | 0.045 | 20             | 32 | 45  | 31.2           | 1.6  |
| LBCF 20 D-2LS | 0.045 | 20             | 32 | 45  | 31.2           | 1.6  |
| LBCF 25 D     | 0.088 | 25             | 40 | 58  | 43.7           | 1.85 |
| LBCF 25 D-2LS | 0.088 | 25             | 40 | 58  | 43.7           | 1.85 |
| LBCF 30 D     | 0.140 | 30             | 47 | 68  | 51.7           | 1.85 |
| LBCF 30 D-2LS | 0.140 | 30             | 47 | 68  | 51.7           | 1.85 |
| LBCF 40 A     | 0.220 | 40             | 62 | 80  | 60.3           | 2.15 |
| LBCF 40 A-2LS | 0.220 | 40             | 62 | 80  | 60.3           | 2.15 |
| LBCF 50 A     | 0.370 | 50             | 75 | 100 | 78.5           | 2.65 |
| LBCF 50 A-2LS | 0.370 | 50             | 75 | 100 | 78.5           | 2.65 |



| E<br>mm | α<br>° | n <sub>r</sub><br>- | C<br>min.<br>N | C<br>max.<br>N | C <sub>0</sub><br>min.<br>N | C <sub>0</sub><br>max.<br>N |
|---------|--------|---------------------|----------------|----------------|-----------------------------|-----------------------------|
|         |        |                     |                |                | C <sub>0</sub><br>min.<br>N | C <sub>0</sub><br>max.<br>N |
| 7.6     | 78     | 4                   | 600            | 1080           | 415                         | 850                         |
| 7.6     | 78     | 4                   | 600            | 1080           | 415                         | 850                         |
| 10.4    | 78     | 4                   | 670            | 1320           | 480                         | 1120                        |
| 10.4    | 78     | 4                   | 670            | 1320           | 480                         | 1120                        |
| 10.8    | 60     | 5                   | 1460           | 2500           | 915                         | 1830                        |
| 10.8    | 60     | 5                   | 1460           | 2500           | 915                         | 1830                        |
| 13.2    | 60     | 5                   | 2280           | 3900           | 1220                        | 2450                        |
| 13.2    | 60     | 5                   | 2280           | 3900           | 1220                        | 2450                        |
| 14.2    | 50     | 5                   | 3250           | 5700           | 1960                        | 3900                        |
| 14.2    | 50     | 5                   | 3250           | 5700           | 1960                        | 3900                        |
| 18.7    | 50     | 6                   | 3380           | 7800           | 2280                        | 5200                        |
| 18.7    | 50     | 6                   | 3380           | 7800           | 2280                        | 5200                        |
| 23.6    | 50     | 6                   | 4900           | 11200          | 3000                        | 6950                        |
| 23.6    | 50     | 6                   | 4900           | 11200          | 3000                        | 6950                        |

## 8 Linear ball bearing units of the standard range, self-aligning

### 8.1 Product design

A comprehensive range of linear bearing units fitted with self-aligning linear ball bearings from the standard range is available for the flexible design of slide assemblies. These units are the ideal choice for applications requiring flexibility in shaft spacing and slide length. A simpler slide structure can be achieved using tandem units with 2 bearings. A flanged bearing unit is also available, providing additional mounting options.

All open and closed units, with the exception of the flanged bearing units, are made of aluminum. These high precision units have been structurally optimized to ensure high strength and rigidity. Linear bearing units LUCD, LUCE, and LUCF made of die-cast material have a very low weight, minimizing acceleration forces and inertia forces. For applications that require preload, slotted designs are available. In open linear ball bearing units with single bearings, the preload can be adjusted.

All linear bearing units are lubricated at the factory and ready for operation. To provide maximum design flexibility, all linear bearing units can be fitted with linear ball bearings made of bearing steel or corrosion-resistant steel, and are available with either seals or shields. Depending on the diameter, the closed and open units are fitted with linear ball bearings of either the A-design or the D-design.

To complete the linear guide system, precision shafts and shaft blocks are also required ►162|13 ►176|14.

Characteristics and designs of linear bearing units:

- lightweight housing made of die-cast aluminum (LUCD, LUCE, LUCF)
- versions with aluminum housings available (LUND, LUNE, LUNF)
- tilting angle of  $\pm 30^\circ$  (self-aligning)
- available with 2 double lip seals or 2 shields
- available in rolling bearing steel (standard) or corrosion-resistant steel
- with factory pre-lubrication
- ready for operation
- with grease fitting
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with ISO 4762

LUCD, LUND

- closed design

LUCE, LUNE

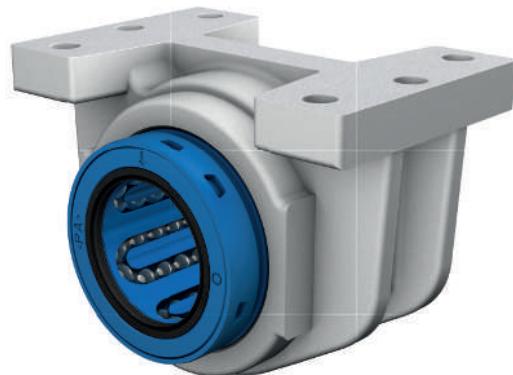
- slotted design for adjusting the bearing clearance

LVCD

- flanged housing with flexible screw mounting from the front of the flange or the rear
- high rigidity due to cast iron housing

LTCD

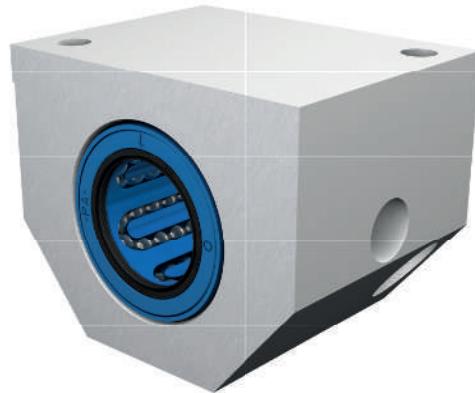
- Tandem unit
- aluminum housing with 2 bearings mounted in series LUCF, LUNF
- open design, adjustable bearing clearance LTCF
- Tandem unit in open design
- aluminum housing with 2 bearings mounted in series


### 8.1.1 Linear ball bearing units of the standard range in closed design

Linear bearing units of the standard range LUCD provide flexible design options for the construction of linear slides. With their very low weight, they are ideal for applications involving low mass inertia and high accelerations.

Linear bearing units LUCD for shaft diameters from 8 mm to 50 mm are fitted with self-aligning linear ball bearings LBCD.

The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to fix the bearing in the housing.


59 Linear bearing units LUCD



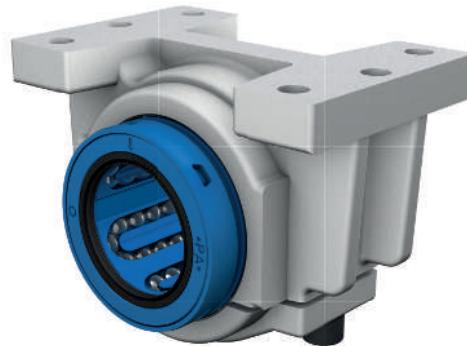
001B7014

In contrast to linear bearing units of the standard range LUCD with die-cast housings, linear bearing units LUND feature an aluminum housing that encloses the linear bearing along its entire length. Linear bearing units LUND are available for shaft diameters from 12 mm to 50 mm and are fitted with self-aligning linear ball bearings LBCD. To facilitate alignment, both linear bearing units feature a reference side with tight tolerances.

60 Linear bearing units with aluminum housing LUND



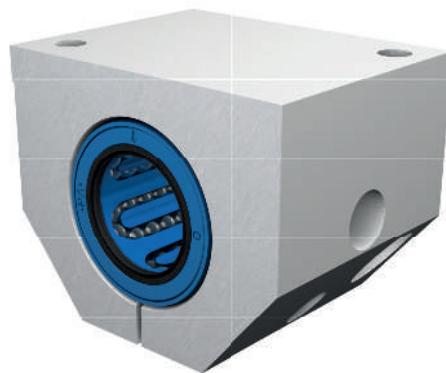
001B7044


### 8.1.2 Linear ball bearing units of the standard range with slotted housing

Linear bearing units of the standard range LUCE are structurally identical to the LUCD bearing units. In these units, the operating clearance or preload can be adjusted via the slotted housing. However, this adjustment must be carried out with the utmost care, as it can affect the service life.

Linear bearing units LUCE for shaft diameters from 12 mm to 50 mm are fitted with self-aligning linear ball bearings LBCD.

The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to fix the bearing in the housing.


61 Linear bearing units LUCE with slotted housing



001B701E

In contrast to linear bearing units of the standard range LUCE with die-cast housings, linear bearing units LUNE feature an aluminum housing that encloses the linear bearing along its entire length. Linear bearing units LUNE are available for shaft diameters from 12 mm to 50 mm and are fitted with self-aligning linear ball bearings LBCD. To facilitate alignment, both linear bearing units feature a reference side with tight tolerances.

④ 62 Linear bearing units with aluminum housing LUNE, slotted



001B704F

8

### 8.1.3 Linear ball bearing units of the standard range with closed flanged housing

Linear bearing units with flanged housing LVCD provide flexible mounting options. The closed flanged housing of these bearing units is made of cast iron. Flanged units LVCD are available for shaft diameters from 12 mm to 50 mm and are fitted with self-aligning linear ball bearings LBCD.

Each linear ball bearing is axially fixed in the housing by a pin. The flange is machined on both sides, allowing the linear bearing unit to be mounted from either the front or rear face. Linear bearing units with flanged housings are lubricated at the factory and cannot be relubricated.

④ 63 Linear bearing units with closed flanged housing LVCD



001B707B

### 8.1.4 Tandem linear bearing units of the standard range

Tandem linear bearing units LTCD consist of a solid aluminum housing with 2 self-aligning linear ball bearings of the standard range LBCD. Tandem linear units are ideal for linear guide systems of any required width. The units' mounting surface can be bolted from top or bottom side using suitable screws, and are available for shaft diameters from 12 mm to 50 mm.

Tandem linear bearing units are lubricated at the factory and can be relubricated via the grease fitting if required, which also serves to secure the bearing axially and against rotation.

Tandem linear bearing units with the suffix 2LS have double lip seals facing outward from the housing.

64 Tandem linear bearing units LTCD



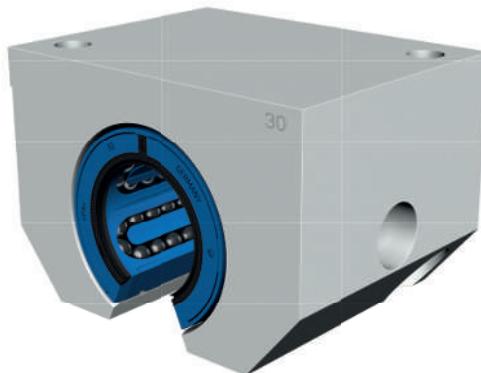
001B7095

### 8.1.5 Linear ball bearing units of the standard range in open design

Linear bearing units of the standard range LUCF and LUNF are open designs and are intended for applications with supported shafts operating under high loads and with long travel distances.

Linear bearing units LUCF are available for shaft diameters from 12 mm to 50 mm and are fitted with self-aligning linear ball bearings LBCF.

The units are lubricated at the factory and can be relubricated via the grease fitting if required. The grease fitting also serves to fix the bearing in the housing. In addition, the bearing clearance can be adjusted via the hexagon socket screw located near the segment cutout.


65 Linear bearing units LUCF in open design



001B702A

In contrast to linear bearing units of the standard range LUCF with die-cast housings, linear bearing units LUNF feature an aluminum housing that encloses the linear bearing along its entire length. Linear bearing units LUNF are available for shaft diameters from 12 mm to 50 mm and are fitted with self-aligning linear ball bearings LBCF. To facilitate alignment, both linear bearing units feature a reference side with tight tolerances.

⊕66 Linear bearing units with aluminum housing LUNF in open design



001B706B

8

### 8.1.6 Tandem linear bearing units of the standard range in open design

Open tandem linear bearing units LTCF consist of a solid aluminum housing and 2 self-aligning linear ball bearings of the standard range LBCF. Tandem linear units are ideal for linear guide systems of any required width. The units' mounting surface can be bolted from top or bottom side using suitable screws, and are available for shaft diameters from 12 mm to 50 mm.

Tandem linear bearing units are lubricated at the factory and can be relubricated via the grease fitting if required, which also serves to secure the bearing axially and against rotation.

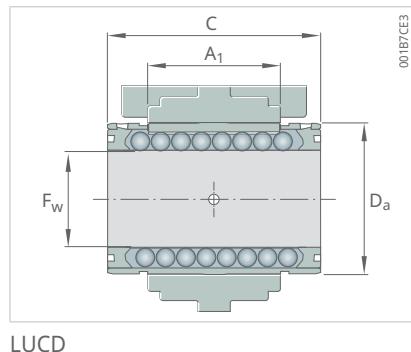
Tandem linear bearing units with the suffix 2LS have double lip seals facing outward from the housing.

⊕67 Tandem linear bearing units LTCF



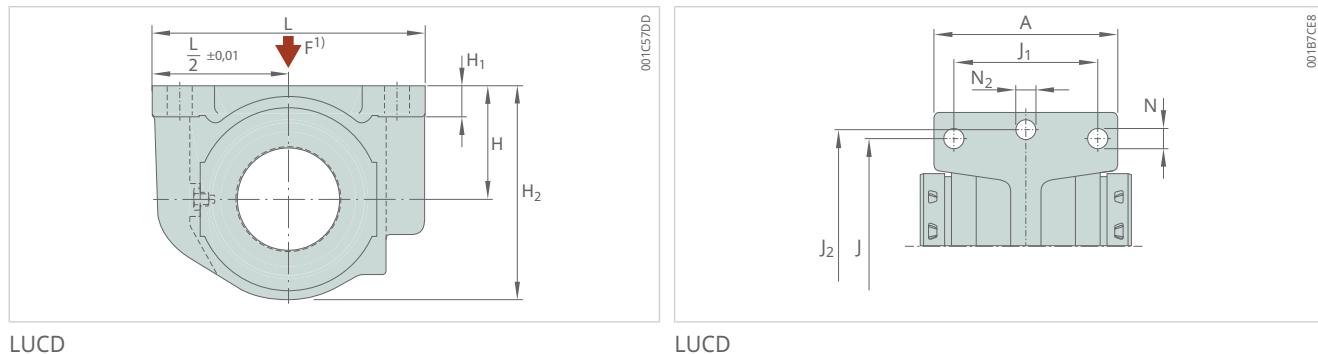
001B70A0

## 8.2 Product tables


### 8.2.1 Explanations

|          |          |                                      |
|----------|----------|--------------------------------------|
| (1)      | -        | Load direction for max. load ratings |
| A        | mm       | Length                               |
| $A_1$    | mm       | Length                               |
| C        | mm       | Length                               |
| $C$      | N        | Basic dynamic load rating            |
| $C_0$    | N        | Basic static load rating             |
| $D_2$    | mm       | Diameter of centering collar         |
| $D_a$    | mm       | Bore diameter                        |
| E        | mm       | Width of cutout                      |
| $F_w$    | mm       | Inscribed diameter of the ball set   |
| H        | mm       | Center height                        |
| $H_1$    | mm       | Height                               |
| $H_2$    | mm       | Height                               |
| $H_3$    | mm       | Height                               |
| $H_4$    | mm       | Height of locating edge              |
| J        | mm       | Distance                             |
| $J_1$    | mm       | Distance                             |
| $J_2$    | mm       | Distance                             |
| L        | mm       | Width                                |
| m        | kg       | Mass                                 |
| N        | mm       | Bore diameter                        |
| $N_1$    | -        | Thread size                          |
| $N_2$    | mm       | Bore diameter                        |
| $\alpha$ | $^\circ$ | Opening angle                        |

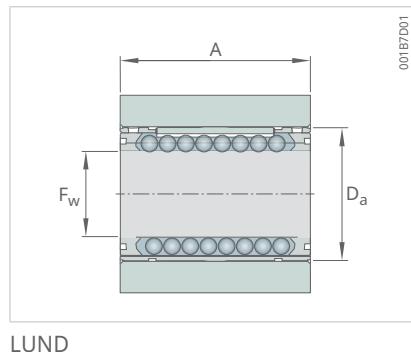



## 8.2.2 Linear bearing units

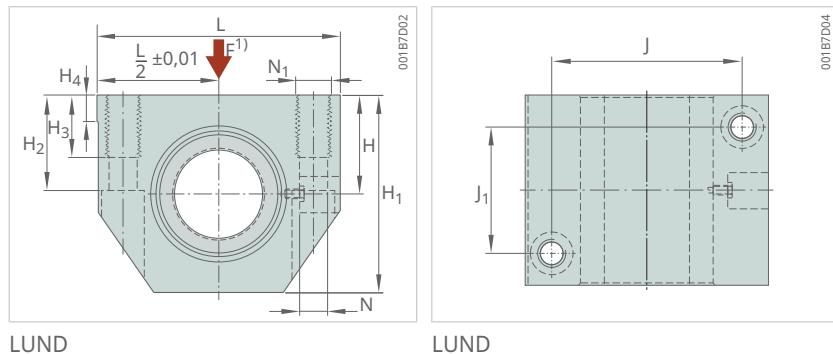
LUCD

with self-aligning linear ball bearings  
LBCD

| Designation   | m<br>kg | Fw<br>mm | A<br>mm | A1<br>mm | C<br>mm | Da<br>mm | H<br>mm | H1<br>mm | H2<br>mm |
|---------------|---------|----------|---------|----------|---------|----------|---------|----------|----------|
|               |         |          |         |          |         |          | ±0.01   |          |          |
| -             |         |          |         |          |         |          |         |          |          |
| LUCD 12 D     | 0.058   | 12       | 31.0    | 20       | 32      | 22       | 18      | 6        | 35       |
| LUCD 12 D-2LS | 0.058   | 12       | 31.0    | 20       | 32      | 22       | 18      | 6        | 35       |
| LUCD 16 D     | 0.075   | 16       | 34.5    | 22       | 36      | 26       | 22      | 7        | 41       |
| LUCD 16 D-2LS | 0.075   | 16       | 34.5    | 22       | 36      | 26       | 22      | 7        | 41       |
| LUCD 20 D     | 0.156   | 20       | 41.0    | 28       | 45      | 32       | 25      | 8        | 48       |
| LUCD 20 D-2LS | 0.156   | 20       | 41.0    | 28       | 45      | 32       | 25      | 8        | 48       |
| LUCD 25 D     | 0.306   | 25       | 52.0    | 40       | 58      | 40       | 30      | 10       | 58       |
| LUCD 25 D-2LS | 0.306   | 25       | 52.0    | 40       | 58      | 40       | 30      | 10       | 58       |
| LUCD 30 D     | 0.448   | 30       | 59.0    | 48       | 68      | 47       | 35      | 10       | 67       |
| LUCD 30 D-2LS | 0.448   | 30       | 59.0    | 48       | 68      | 47       | 35      | 10       | 67       |
| LUCD 40 D     | 0.792   | 40       | 74.0    | 56       | 80      | 62       | 45      | 12       | 85       |
| LUCD 40 D-2LS | 0.792   | 40       | 74.0    | 56       | 80      | 62       | 45      | 12       | 85       |
| LUCD 50       | 1.195   | 50       | 66.0    | 72       | 100     | 75       | 50      | 14       | 99       |
| LUCD 50-2LS   | 1.195   | 50       | 66.0    | 72       | 100     | 75       | 50      | 14       | 99       |


<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02




| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N   | N <sub>2</sub> | C    | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|----------------|-----------------|-----|----------------|------|-------|----------------|----------------|
|     |                |                |                 |     |                | min. | max.  | min.           | max.           |
| mm  | mm             | mm             | mm              | mm  | mm             | N    | N     | N              | N              |
| 32  | 23             | 42             | 52              | 4.3 | 5.3            | 800  | 1220  | 570            | 930            |
| 32  | 23             | 42             | 52              | 4.3 | 5.3            | 800  | 1220  | 570            | 930            |
| 40  | 26             | 46             | 56              | 4.3 | 5.3            | 950  | 1400  | 655            | 1060           |
| 40  | 26             | 46             | 56              | 4.3 | 5.3            | 950  | 1400  | 655            | 1060           |
| 45  | 32             | 58             | 70              | 4.3 | 6.4            | 1730 | 2550  | 1120           | 1800           |
| 45  | 32             | 58             | 70              | 4.3 | 6.4            | 1730 | 2550  | 1120           | 1800           |
| 60  | 40             | 68             | 80              | 5.3 | 6.4            | 2600 | 3800  | 1430           | 2320           |
| 60  | 40             | 68             | 80              | 5.3 | 6.4            | 2600 | 3800  | 1430           | 2320           |
| 68  | 45             | 76             | 88              | 6.4 | 6.4            | 3800 | 5600  | 2320           | 3750           |
| 68  | 45             | 76             | 88              | 6.4 | 6.4            | 3800 | 5600  | 2320           | 3750           |
| 86  | 58             | 94             | 108             | 8.4 | 8.4            | 6550 | 9650  | 3350           | 5700           |
| 86  | 58             | 94             | 108             | 8.4 | 8.4            | 6550 | 9650  | 3350           | 5700           |
| 108 | 50             | 116            | 135             | 8.4 | 10.5           | 8000 | 11200 | 4150           | 6950           |
| 108 | 50             | 116            | 135             | 8.4 | 10.5           | 8000 | 11200 | 4150           | 6950           |

## 8.2.3 Linear bearing units

LUND

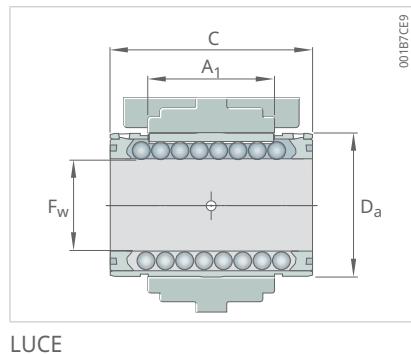
with self-aligning linear ball bearings  
LBCD

| Designation   | m     | F <sub>w</sub> | A   | D <sub>a</sub> | H<br>±0.01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> |
|---------------|-------|----------------|-----|----------------|------------|----------------|----------------|----------------|----------------|
|               |       |                |     |                |            |                |                |                |                |
| -             | kg    | mm             | mm  | mm             | mm         | mm             | mm             | mm             | mm             |
| LUND 12 D     | 0.100 | 12             | 32  | 22             | 18         | 35             | 16.5           | 11             | 6.0            |
| LUND 12 D-2LS | 0.100 | 12             | 32  | 22             | 18         | 35             | 16.5           | 11             | 6.0            |
| LUND 16 D     | 0.169 | 16             | 37  | 26             | 22         | 42             | 21.0           | 13             | 7.0            |
| LUND 16 D-2LS | 0.169 | 16             | 37  | 26             | 22         | 42             | 21.0           | 13             | 7.0            |
| LUND 20 D     | 0.272 | 20             | 45  | 32             | 25         | 50             | 24.0           | 18             | 7.5            |
| LUND 20 D-2LS | 0.272 | 20             | 45  | 32             | 25         | 50             | 24.0           | 18             | 7.5            |
| LUND 25 D     | 0.552 | 25             | 58  | 40             | 30         | 61             | 29.0           | 22             | 8.5            |
| LUND 25 D-2LS | 0.552 | 25             | 58  | 40             | 30         | 61             | 29.0           | 22             | 8.5            |
| LUND 30 D     | 0.825 | 30             | 68  | 47             | 35         | 70             | 34.0           | 22             | 9.5            |
| LUND 30 D-2LS | 0.825 | 30             | 68  | 47             | 35         | 70             | 34.0           | 22             | 9.5            |
| LUND 40 D     | 1.494 | 40             | 80  | 62             | 45         | 90             | 44.0           | 26             | 11.0           |
| LUND 40 D-2LS | 1.494 | 40             | 80  | 62             | 45         | 90             | 44.0           | 26             | 11.0           |
| LUND 50       | 2.478 | 50             | 100 | 75             | 50         | 105            | 49.0           | 35             | 11.0           |
| LUND 50-2LS   | 2.478 | 50             | 100 | 75             | 50         | 105            | 49.0           | 35             | 11.0           |



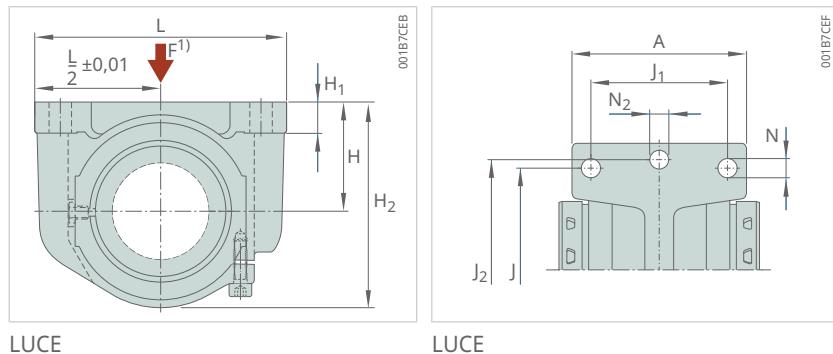
LUND

LUND


| J   | J <sub>1</sub> | L   | N    | N <sub>1</sub> | C    |       | C <sub>0</sub> |      |
|-----|----------------|-----|------|----------------|------|-------|----------------|------|
|     |                |     |      |                | min. | max.  | min.           | max. |
| mm  | mm             | mm  | mm   | -              | N    | N     | N              | N    |
| 32  | 23             | 43  | 4.3  | M5             | 800  | 1220  | 570            | 930  |
| 32  | 23             | 43  | 4.3  | M5             | 800  | 1220  | 570            | 930  |
| 40  | 26             | 53  | 5.3  | M6             | 950  | 1400  | 655            | 1060 |
| 40  | 26             | 53  | 5.3  | M6             | 950  | 1400  | 655            | 1060 |
| 45  | 32             | 60  | 6.6  | M8             | 1730 | 2550  | 1120           | 1800 |
| 45  | 32             | 60  | 6.6  | M8             | 1730 | 2550  | 1120           | 1800 |
| 60  | 40             | 78  | 8.4  | M10            | 2600 | 3800  | 1430           | 2320 |
| 60  | 40             | 78  | 8.4  | M10            | 2600 | 3800  | 1430           | 2320 |
| 68  | 45             | 87  | 8.4  | M10            | 3800 | 5600  | 2320           | 3750 |
| 68  | 45             | 87  | 8.4  | M10            | 3800 | 5600  | 2320           | 3750 |
| 86  | 58             | 108 | 10.5 | M12            | 6550 | 9650  | 3350           | 5700 |
| 86  | 58             | 108 | 10.5 | M12            | 6550 | 9650  | 3350           | 5700 |
| 108 | 50             | 132 | 13.5 | M16            | 8000 | 11200 | 4150           | 6950 |
| 108 | 50             | 132 | 13.5 | M16            | 8000 | 11200 | 4150           | 6950 |

## 8.2.4 Linear bearing units

## LUCE


with self-aligning linear ball bearings  
LBCD

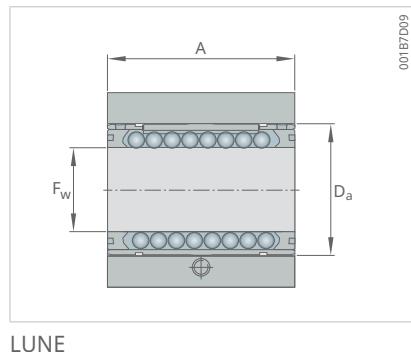
Adjustable operating clearance



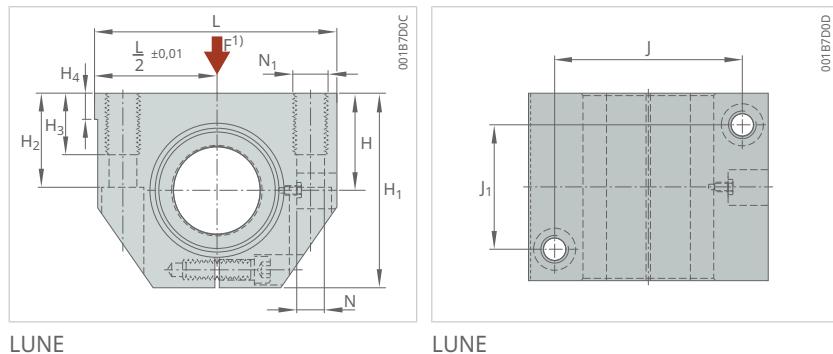
| Designation   | m     | F <sub>w</sub> | A  | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> |    |
|---------------|-------|----------------|----|----------------|-----|----------------|----|----------------|----------------|----|
|               |       |                |    |                |     |                |    |                | mm             | mm |
| -             | kg    | mm             | mm | mm             | mm  | mm             | mm | mm             | mm             | mm |
| LUCE 12 D     | 0.058 | 12             | 31 | 20             | 32  | 22             | 18 | 6              | 35             |    |
| LUCE 12 D-2LS | 0.058 | 12             | 31 | 20             | 32  | 22             | 18 | 6              | 35             |    |
| LUCE 16 D     | 0.076 | 16             | 35 | 22             | 36  | 26             | 22 | 7              | 41             |    |
| LUCE 16 D-2LS | 0.076 | 16             | 35 | 22             | 36  | 26             | 22 | 7              | 41             |    |
| LUCE 20 D     | 0.159 | 20             | 41 | 28             | 45  | 32             | 25 | 8              | 48             |    |
| LUCE 20 D-2LS | 0.159 | 20             | 41 | 28             | 45  | 32             | 25 | 8              | 48             |    |
| LUCE 25 D     | 0.308 | 25             | 52 | 40             | 58  | 40             | 30 | 10             | 58             |    |
| LUCE 25 D-2LS | 0.308 | 25             | 52 | 40             | 58  | 40             | 30 | 10             | 58             |    |
| LUCE 30 D     | 0.450 | 30             | 59 | 48             | 68  | 47             | 35 | 10             | 67             |    |
| LUCE 30 D-2LS | 0.450 | 30             | 59 | 48             | 68  | 47             | 35 | 10             | 67             |    |
| LUCE 40 D     | 0.788 | 40             | 74 | 56             | 80  | 62             | 45 | 12             | 85             |    |
| LUCE 40 D-2LS | 0.788 | 40             | 74 | 56             | 80  | 62             | 45 | 12             | 85             |    |
| LUCE 50       | 1.197 | 50             | 66 | 72             | 100 | 75             | 50 | 14             | 99             |    |
| LUCE 50-2LS   | 1.197 | 50             | 66 | 72             | 100 | 75             | 50 | 14             | 99             |    |

<sup>1)</sup> For sizes 50 to 80: tolerance L/2  $\pm$  0.02




| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N   | N <sub>2</sub> | C    |       | C <sub>0</sub> |      |
|-----|----------------|----------------|-----------------|-----|----------------|------|-------|----------------|------|
|     |                |                |                 |     |                | min. | max.  | min.           | max. |
| mm  | mm             | mm             | mm              | mm  | mm             | N    | N     | N              | N    |
| 32  | 23             | 42             | 52              | 4.3 | 5.3            | 800  | 1220  | 570            | 930  |
| 32  | 23             | 42             | 52              | 4.3 | 5.3            | 800  | 1220  | 570            | 930  |
| 40  | 26             | 46             | 56              | 4.3 | 5.3            | 950  | 1400  | 655            | 1060 |
| 40  | 26             | 46             | 56              | 4.3 | 5.3            | 950  | 1400  | 655            | 1060 |
| 45  | 32             | 58             | 70              | 4.3 | 6.4            | 1730 | 2550  | 1120           | 1800 |
| 45  | 32             | 58             | 70              | 4.3 | 6.4            | 1730 | 2550  | 1120           | 1800 |
| 60  | 40             | 68             | 80              | 5.3 | 6.4            | 2600 | 3800  | 1430           | 2320 |
| 60  | 40             | 68             | 80              | 5.3 | 6.4            | 2600 | 3800  | 1430           | 2320 |
| 68  | 45             | 76             | 88              | 6.4 | 6.4            | 3800 | 5600  | 2320           | 3750 |
| 68  | 45             | 76             | 88              | 6.4 | 6.4            | 3800 | 5600  | 2320           | 3750 |
| 86  | 58             | 94             | 108             | 8.4 | 8.4            | 6550 | 9650  | 3350           | 5700 |
| 86  | 58             | 94             | 108             | 8.4 | 8.4            | 6550 | 9650  | 3350           | 5700 |
| 108 | 50             | 116            | 135             | 8.4 | 10.5           | 8000 | 11200 | 4150           | 6950 |
| 108 | 50             | 116            | 135             | 8.4 | 10.5           | 8000 | 11200 | 4150           | 6950 |

## 8.2.5 Linear bearing units


### LUNE

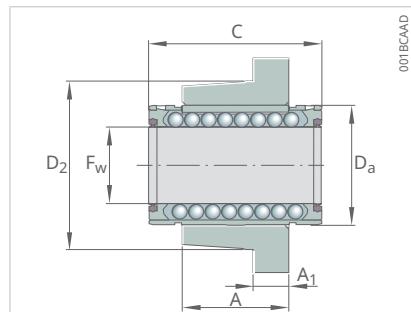
with self-aligning linear ball bearings  
LBCD

Adjustable operating clearance



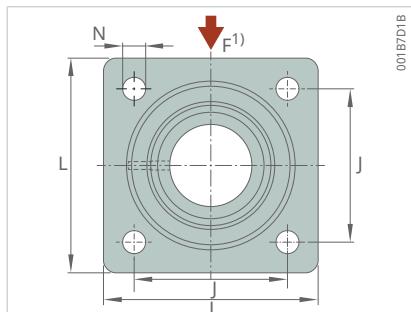
| Designation   | m     | F <sub>w</sub> | A   | D <sub>a</sub> | H<br>±0.01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> |
|---------------|-------|----------------|-----|----------------|------------|----------------|----------------|----------------|----------------|
|               |       |                |     |                |            |                |                |                |                |
| -             | kg    | mm             | mm  | mm             | mm         | mm             | mm             | mm             | mm             |
| LUNE 12 D     | 0.100 | 12             | 32  | 22             | 18         | 35             | 16.5           | 11             | 6.0            |
| LUNE 12 D-2LS | 0.100 | 12             | 32  | 22             | 18         | 35             | 16.5           | 11             | 6.0            |
| LUNE 16 D     | 0.169 | 16             | 37  | 26             | 22         | 42             | 21.0           | 13             | 7.0            |
| LUNE 16 D-2LS | 0.169 | 16             | 37  | 26             | 22         | 42             | 21.0           | 13             | 7.0            |
| LUNE 20 D     | 0.272 | 20             | 45  | 32             | 25         | 50             | 24.0           | 18             | 7.5            |
| LUNE 20 D-2LS | 0.272 | 20             | 45  | 32             | 25         | 50             | 24.0           | 18             | 7.5            |
| LUNE 25 D     | 0.552 | 25             | 58  | 40             | 30         | 61             | 29.0           | 22             | 8.5            |
| LUNE 25 D-2LS | 0.552 | 25             | 58  | 40             | 30         | 61             | 29.0           | 22             | 8.5            |
| LUNE 30 D     | 0.825 | 30             | 68  | 47             | 35         | 70             | 34.0           | 22             | 9.5            |
| LUNE 30 D-2LS | 0.825 | 30             | 68  | 47             | 35         | 70             | 34.0           | 22             | 9.5            |
| LUNE 40 D     | 1.494 | 40             | 80  | 62             | 45         | 90             | 44.0           | 26             | 11.0           |
| LUNE 40 D-2LS | 1.494 | 40             | 80  | 62             | 45         | 90             | 44.0           | 26             | 11.0           |
| LUNE 50       | 2.478 | 50             | 100 | 75             | 50         | 105            | 49.0           | 35             | 11.0           |
| LUNE 50-2LS   | 2.478 | 50             | 100 | 75             | 50         | 105            | 49.0           | 35             | 11.0           |




LUNE

LUNE

| J   | J <sub>1</sub> | L   | N    | N <sub>1</sub> | C    |       | C <sub>0</sub> |       |
|-----|----------------|-----|------|----------------|------|-------|----------------|-------|
|     |                |     |      |                | min. | max.  | min.           | max.  |
| mm  | mm             | mm  | mm   | -              | N    | N     | N              | N     |
| 32  | 23             | 43  | 4.3  | M5             | 930  | 1370  | 695            | 1120  |
| 32  | 23             | 43  | 4.3  | M5             | 930  | 1370  | 695            | 1120  |
| 40  | 26             | 53  | 5.3  | M6             | 1080 | 1600  | 800            | 1290  |
| 40  | 26             | 53  | 5.3  | M6             | 1080 | 1600  | 800            | 1290  |
| 45  | 32             | 60  | 6.6  | M8             | 2200 | 3250  | 1630           | 2650  |
| 45  | 32             | 60  | 6.6  | M8             | 2200 | 3250  | 1630           | 2650  |
| 60  | 40             | 78  | 8.4  | M10            | 3100 | 4550  | 2360           | 3800  |
| 60  | 40             | 78  | 8.4  | M10            | 3100 | 4550  | 2360           | 3800  |
| 68  | 45             | 87  | 8.4  | M10            | 4800 | 7100  | 3550           | 5700  |
| 68  | 45             | 87  | 8.4  | M10            | 4800 | 7100  | 3550           | 5700  |
| 86  | 58             | 108 | 10.5 | M12            | 7650 | 11200 | 5100           | 8300  |
| 86  | 58             | 108 | 10.5 | M12            | 7650 | 11200 | 5100           | 8300  |
| 108 | 50             | 132 | 13.5 | M16            | 9650 | 13400 | 7200           | 12200 |
| 108 | 50             | 132 | 13.5 | M16            | 9650 | 13400 | 7200           | 12200 |

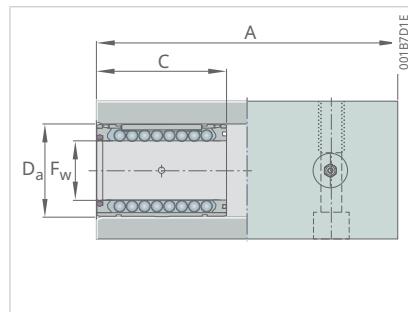

### 8.2.6 Flanged units LVCD

with self-aligning linear ball bearings  
LBCD



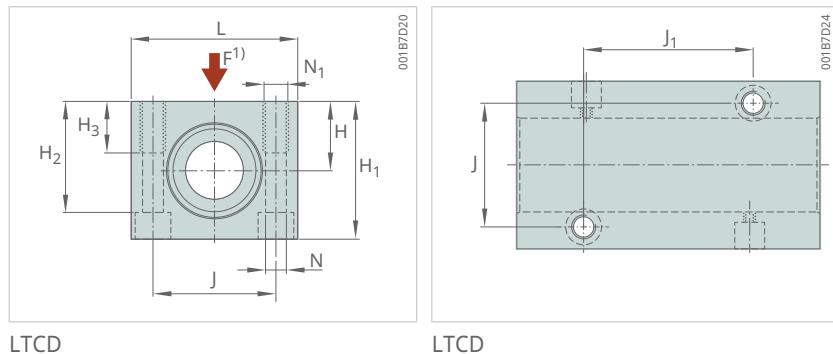
LVCD with 2 double lip seals

| Designation   | m     | F <sub>w</sub> | A  | A <sub>1</sub> | C   | D <sub>a</sub> | D <sub>2</sub> |
|---------------|-------|----------------|----|----------------|-----|----------------|----------------|
|               |       |                |    |                |     |                | 0<br>-0.5      |
| -             | kg    | mm             | mm | mm             | mm  | mm             | mm             |
| LVCD 12 D     | 0.117 | 12             | 20 | 8              | 32  | 22             | 32             |
| LVCD 12 D-2LS | 0.117 | 12             | 20 | 8              | 32  | 22             | 32             |
| LVCD 16 D     | 0.170 | 16             | 22 | 8              | 36  | 26             | 38             |
| LVCD 16 D-2LS | 0.170 | 16             | 22 | 8              | 36  | 26             | 38             |
| LVCD 20 D     | 0.325 | 20             | 28 | 10             | 45  | 32             | 46             |
| LVCD 20 D-2LS | 0.325 | 20             | 28 | 10             | 45  | 32             | 46             |
| LVCD 25 D     | 0.674 | 25             | 40 | 12             | 58  | 40             | 58             |
| LVCD 25 D-2LS | 0.674 | 25             | 40 | 12             | 58  | 40             | 58             |
| LVCD 30 D     | 1.030 | 30             | 48 | 14             | 68  | 47             | 66             |
| LVCD 30 D-2LS | 1.030 | 30             | 48 | 14             | 68  | 47             | 66             |
| LVCD 40 D     | 1.966 | 40             | 56 | 16             | 80  | 62             | 90             |
| LVCD 40 D-2LS | 1.966 | 40             | 56 | 16             | 80  | 62             | 90             |
| LVCD 50       | 3.274 | 50             | 72 | 18             | 100 | 75             | 110            |
| LVCD 50-2LS   | 3.274 | 50             | 72 | 18             | 100 | 75             | 110            |




LVCD

| J  | L   | N    | C    | C     | C <sub>0</sub> | C <sub>0</sub> |
|----|-----|------|------|-------|----------------|----------------|
|    |     |      | min. | max.  | min.           | max.           |
| mm | mm  | mm   | N    | N     | N              | N              |
| 30 | 42  | 5.5  | 800  | 1220  | 570            | 930            |
| 30 | 42  | 5.5  | 800  | 1220  | 570            | 930            |
| 35 | 50  | 5.5  | 950  | 1400  | 655            | 1060           |
| 35 | 50  | 5.5  | 950  | 1400  | 655            | 1060           |
| 42 | 60  | 6.6  | 1730 | 2550  | 1120           | 1800           |
| 42 | 60  | 6.6  | 1730 | 2550  | 1120           | 1800           |
| 54 | 74  | 6.6  | 2600 | 3800  | 1430           | 2320           |
| 54 | 74  | 6.6  | 2600 | 3800  | 1430           | 2320           |
| 60 | 84  | 9.0  | 3800 | 5600  | 2320           | 3750           |
| 60 | 84  | 9.0  | 3800 | 5600  | 2320           | 3750           |
| 78 | 108 | 11.0 | 6550 | 9650  | 3350           | 5700           |
| 78 | 108 | 11.0 | 6550 | 9650  | 3350           | 5700           |
| 98 | 130 | 11.0 | 8000 | 11200 | 4150           | 6950           |
| 98 | 130 | 11.0 | 8000 | 11200 | 4150           | 6950           |


### 8.2.7 Tandem units LTCD

with self-aligning linear ball bearings  
LBCD



LTCD with 2 double lip seals

| Designation   | m     | F <sub>w</sub> | A   | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|---------------|-------|----------------|-----|-----|----------------|----|----------------|----------------|----------------|
|               |       |                |     |     |                |    |                |                |                |
| -             | kg    | mm             | mm  | mm  | mm             | mm | mm             | mm             | mm             |
| LTCD 12 D     | 0.248 | 12             | 76  | 32  | 22             | 18 | +0.01          | -0.01          | 35.0           |
| LTCD 12 D-2LS | 0.248 | 12             | 76  | 32  | 22             | 18 | +0.01          | -0.01          | 35.0           |
| LTCD 16 D     | 0.385 | 16             | 84  | 36  | 26             | 22 | +0.01          | -0.01          | 41.5           |
| LTCD 16 D-2LS | 0.385 | 16             | 84  | 36  | 26             | 22 | +0.01          | -0.01          | 41.5           |
| LTCD 20 D     | 0.694 | 20             | 104 | 45  | 32             | 25 | +0.01          | -0.01          | 49.5           |
| LTCD 20 D-2LS | 0.694 | 20             | 104 | 45  | 32             | 25 | +0.01          | -0.01          | 49.5           |
| LTCD 25 D     | 1.278 | 25             | 130 | 58  | 40             | 30 | +0.01          | -0.01          | 59.5           |
| LTCD 25 D-2LS | 1.278 | 25             | 130 | 58  | 40             | 30 | +0.01          | -0.01          | 59.5           |
| LTCD 30 D     | 1.938 | 30             | 152 | 68  | 47             | 35 | +0.01          | -0.01          | 69.5           |
| LTCD 30 D-2LS | 1.938 | 30             | 152 | 68  | 47             | 35 | +0.01          | -0.01          | 69.5           |
| LTCD 40 D     | 3.669 | 40             | 176 | 80  | 62             | 45 | +0.01          | -0.01          | 89.5           |
| LTCD 40 D-2LS | 3.669 | 40             | 176 | 80  | 62             | 45 | +0.01          | -0.01          | 89.5           |
| LTCD 50       | 5.930 | 50             | 224 | 100 | 75             | 50 | +0.01          | -0.01          | 99.5           |
| LTCD 50-2LS   | 5.930 | 50             | 224 | 100 | 75             | 50 | +0.01          | -0.01          | 99.5           |

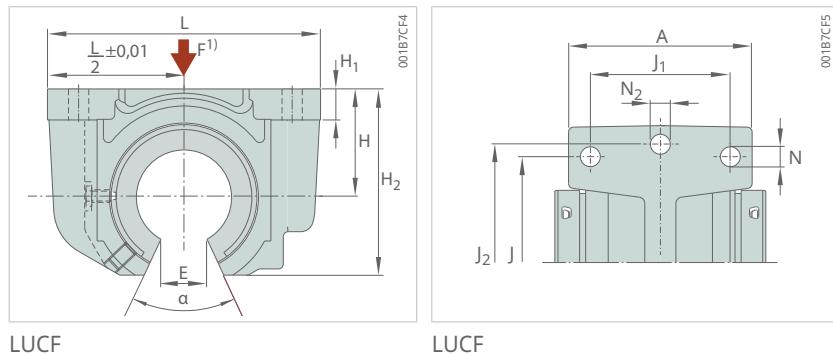


| J    | J <sub>1</sub> | L   | N   | N <sub>1</sub> | C    |      | C <sub>0</sub> |       | C <sub>0</sub> |   |
|------|----------------|-----|-----|----------------|------|------|----------------|-------|----------------|---|
|      |                |     |     |                | min. | max. | N              | N     | N              | N |
| mm   | mm             | mm  | mm  | -              | N    | N    | N              | N     | N              | N |
| 27.0 | 13             | 30  | 40  | 42             | 5.3  | M6   | 1290           | 2000  |                |   |
| 27.0 | 13             | 30  | 40  | 42             | 5.3  | M6   | 1290           | 2000  |                |   |
| 33.0 | 13             | 36  | 45  | 50             | 5.3  | M6   | 1530           | 2280  |                |   |
| 33.0 | 13             | 36  | 45  | 50             | 5.3  | M6   | 1530           | 2280  |                |   |
| 39.5 | 18             | 45  | 55  | 60             | 6.4  | M8   | 2800           | 4150  |                |   |
| 39.5 | 18             | 45  | 55  | 60             | 6.4  | M8   | 2800           | 4150  |                |   |
| 47.0 | 22             | 54  | 70  | 74             | 8.4  | M10  | 4250           | 6200  |                |   |
| 47.0 | 22             | 54  | 70  | 74             | 8.4  | M10  | 4250           | 6200  |                |   |
| 55.0 | 26             | 62  | 85  | 84             | 10.5 | M12  | 6200           | 9150  |                |   |
| 55.0 | 26             | 62  | 85  | 84             | 10.5 | M12  | 6200           | 9150  |                |   |
| 71.0 | 34             | 80  | 100 | 108            | 13.0 | M16  | 10600          | 15600 |                |   |
| 71.0 | 34             | 80  | 100 | 108            | 13.0 | M16  | 10600          | 15600 |                |   |
| 81.0 | 34             | 100 | 125 | 130            | 13.0 | M16  | 12900          | 18300 |                |   |
| 81.0 | 34             | 100 | 125 | 130            | 13.0 | M16  | 12900          | 18300 |                |   |


## 8.2.8 Linear bearing units

LUCF

with self-aligning linear ball bearings


LBCF

open design

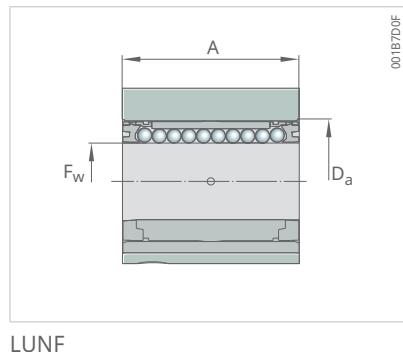


| Designation   | m     | F <sub>w</sub> | A  | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> |
|---------------|-------|----------------|----|----------------|-----|----------------|----|----------------|
|               |       |                |    |                |     |                | mm | mm             |
| -             | kg    | mm             | mm | mm             | mm  | mm             | mm | mm             |
| LUCF 12 D     | 0.050 | 12             | 31 | 20             | 32  | 22             | 18 | 6              |
| LUCF 12 D-2LS | 0.050 | 12             | 31 | 20             | 32  | 22             | 18 | 6              |
| LUCF 16 D     | 0.065 | 16             | 35 | 22             | 36  | 26             | 22 | 7              |
| LUCF 16 D-2LS | 0.065 | 16             | 35 | 22             | 36  | 26             | 22 | 7              |
| LUCF 20 D     | 0.137 | 20             | 41 | 28             | 45  | 32             | 25 | 8              |
| LUCF 20 D-2LS | 0.137 | 20             | 41 | 28             | 45  | 32             | 25 | 8              |
| LUCF 25 D     | 0.267 | 25             | 52 | 40             | 58  | 40             | 30 | 10             |
| LUCF 25 D-2LS | 0.267 | 25             | 52 | 40             | 58  | 40             | 30 | 10             |
| LUCF 30 D     | 0.394 | 30             | 59 | 48             | 68  | 47             | 35 | 10             |
| LUCF 30 D-2LS | 0.394 | 30             | 59 | 48             | 68  | 47             | 35 | 10             |
| LUCF 40       | 0.629 | 40             | 74 | 56             | 80  | 62             | 45 | 12             |
| LUCF 40-2LS   | 0.629 | 40             | 74 | 56             | 80  | 62             | 45 | 12             |
| LUCF 50       | 1.035 | 50             | 66 | 72             | 100 | 75             | 50 | 14             |
| LUCF 50-2LS   | 1.035 | 50             | 66 | 72             | 100 | 75             | 50 | 14             |

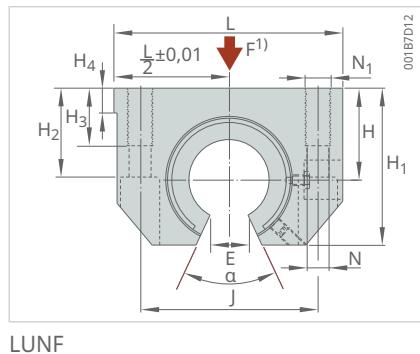
<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02



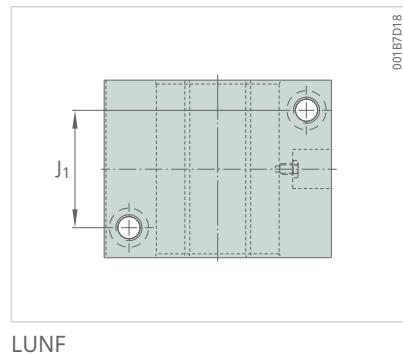
| H <sub>2</sub> | J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N   | N <sub>2</sub> | E    | α  | C    | C     | C <sub>0</sub> | C <sub>0</sub> |
|----------------|-----|----------------|----------------|-----------------|-----|----------------|------|----|------|-------|----------------|----------------|
|                |     |                |                |                 |     |                |      |    | min. | max.  | min.           | max.           |
| mm             | mm  | mm             | mm             | mm              | mm  | mm             | mm   | °  | N    | N     | N              | N              |
| 28             | 32  | 23             | 42             | 52              | 4.3 | 5.3            | 7.6  | 78 | 600  | 1080  | 415            | 850            |
| 28             | 32  | 23             | 42             | 52              | 4.3 | 5.3            | 7.6  | 78 | 600  | 1080  | 415            | 850            |
| 35             | 40  | 26             | 46             | 56              | 4.3 | 5.3            | 10.4 | 78 | 670  | 1320  | 480            | 1120           |
| 35             | 40  | 26             | 46             | 56              | 4.3 | 5.3            | 10.4 | 78 | 670  | 1320  | 480            | 1120           |
| 42             | 45  | 32             | 58             | 70              | 4.3 | 6.4            | 10.8 | 60 | 1460 | 2500  | 915            | 1830           |
| 42             | 45  | 32             | 58             | 70              | 4.3 | 6.4            | 10.8 | 60 | 1460 | 2500  | 915            | 1830           |
| 51             | 60  | 40             | 68             | 80              | 5.3 | 6.4            | 13.2 | 60 | 2280 | 3900  | 1220           | 2450           |
| 51             | 60  | 40             | 68             | 80              | 5.3 | 6.4            | 13.2 | 60 | 2280 | 3900  | 1220           | 2450           |
| 60             | 68  | 45             | 76             | 88              | 6.4 | 6.4            | 14.2 | 50 | 3250 | 5700  | 1960           | 3900           |
| 60             | 68  | 45             | 76             | 88              | 6.4 | 6.4            | 14.2 | 50 | 3250 | 5700  | 1960           | 3900           |
| 77             | 86  | 58             | 94             | 108             | 8.4 | 8.4            | 18.7 | 50 | 3380 | 7800  | 2280           | 5200           |
| 77             | 86  | 58             | 94             | 108             | 8.4 | 8.4            | 18.7 | 50 | 3380 | 7800  | 2280           | 5200           |
| 88             | 108 | 50             | 116            | 135             | 8.4 | 10.5           | 23.6 | 50 | 4900 | 11200 | 3000           | 6950           |
| 88             | 108 | 50             | 116            | 135             | 8.4 | 10.5           | 23.6 | 50 | 4900 | 11200 | 3000           | 6950           |


## 8.2.9 Linear bearing units

## LUNF


with self-aligning linear ball bearings

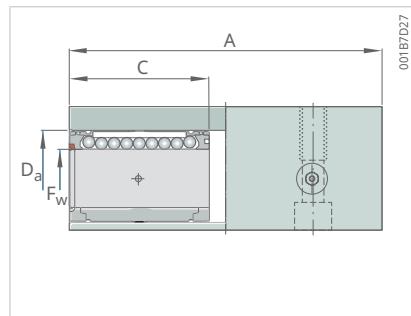
LBCF


open design



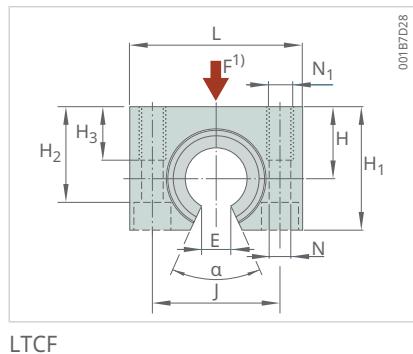
| Designation   | m     | F <sub>w</sub> | A   | D <sub>a</sub> | H  |       |                |                |                |                |
|---------------|-------|----------------|-----|----------------|----|-------|----------------|----------------|----------------|----------------|
|               |       |                |     |                |    | ±0.01 | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> |
| -             | kg    | mm             | mm  | mm             | mm | mm    | mm             | mm             | mm             | mm             |
| LUNF 12 D     | 0.080 | 12             | 32  | 22             | 18 | 28    | 16.5           | 11             | 6.0            |                |
| LUNF 12 D-2LS | 0.080 | 12             | 32  | 22             | 18 | 28    | 16.5           | 11             | 6.0            |                |
| LUNF 16 D     | 0.138 | 16             | 37  | 26             | 22 | 35    | 21.0           | 13             | 7.0            |                |
| LUNF 16 D-2LS | 0.138 | 16             | 37  | 26             | 22 | 35    | 21.0           | 13             | 7.0            |                |
| LUNF 20 D     | 0.224 | 20             | 45  | 32             | 25 | 42    | 24.0           | 18             | 7.5            |                |
| LUNF 20 D-2LS | 0.224 | 20             | 45  | 32             | 25 | 42    | 24.0           | 18             | 7.5            |                |
| LUNF 25 D     | 0.460 | 25             | 58  | 40             | 30 | 51    | 29.0           | 22             | 8.5            |                |
| LUNF 25 D-2LS | 0.460 | 25             | 58  | 40             | 30 | 51    | 29.0           | 22             | 8.5            |                |
| LUNF 30 D     | 0.694 | 30             | 68  | 47             | 35 | 60    | 34.0           | 22             | 9.5            |                |
| LUNF 30 D-2LS | 0.694 | 30             | 68  | 47             | 35 | 60    | 34.0           | 22             | 9.5            |                |
| LUNF 40       | 1.208 | 40             | 80  | 62             | 45 | 77    | 44.0           | 26             | 11.0           |                |
| LUNF 40-2LS   | 1.208 | 40             | 80  | 62             | 45 | 77    | 44.0           | 26             | 11.0           |                |
| LUNF 50       | 2.021 | 50             | 100 | 75             | 50 | 88    | 49.0           | 35             | 11.0           |                |
| LUNF 50-2LS   | 2.021 | 50             | 100 | 75             | 50 | 88    | 49.0           | 35             | 11.0           |                |



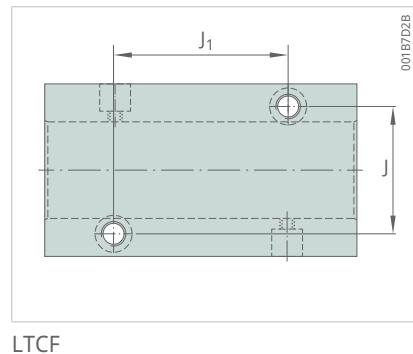

LUNF



LUNF


| J   | J <sub>1</sub> | L   | N    | N <sub>1</sub> | E    | α  | C    | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|-----|------|----------------|------|----|------|-------|----------------|----------------|
|     |                |     |      |                |      |    |      |       | min.           | max.           |
| mm  | mm             | mm  | mm   | -              | mm   | °  | N    | N     | N              | N              |
| 32  | 23             | 43  | 4.3  | M5             | 7.6  | 78 | 600  | 1080  | 415            | 850            |
| 32  | 23             | 43  | 4.3  | M5             | 7.6  | 78 | 600  | 1080  | 415            | 850            |
| 40  | 26             | 53  | 5.3  | M6             | 10.4 | 78 | 670  | 1320  | 480            | 1120           |
| 40  | 26             | 53  | 5.3  | M6             | 10.4 | 78 | 670  | 1320  | 480            | 1120           |
| 45  | 32             | 60  | 6.6  | M8             | 10.8 | 60 | 1460 | 2500  | 915            | 1830           |
| 45  | 32             | 60  | 6.6  | M8             | 10.8 | 60 | 1460 | 2500  | 915            | 1830           |
| 60  | 40             | 78  | 8.4  | M10            | 13.2 | 60 | 2280 | 3900  | 1220           | 2450           |
| 60  | 40             | 78  | 8.4  | M10            | 13.2 | 60 | 2280 | 3900  | 1220           | 2450           |
| 68  | 45             | 87  | 8.4  | M10            | 14.2 | 50 | 3250 | 5700  | 1960           | 3900           |
| 68  | 45             | 87  | 8.4  | M10            | 14.2 | 50 | 3250 | 5700  | 1960           | 3900           |
| 86  | 58             | 108 | 10.5 | M12            | 18.7 | 50 | 3380 | 7800  | 2280           | 5200           |
| 86  | 58             | 108 | 10.5 | M12            | 18.7 | 50 | 3380 | 7800  | 2280           | 5200           |
| 108 | 50             | 132 | 13.5 | M16            | 23.6 | 50 | 4900 | 11200 | 3000           | 6950           |
| 108 | 50             | 132 | 13.5 | M16            | 23.6 | 50 | 4900 | 11200 | 3000           | 6950           |

**8.2.10 Tandem units LTCF**  
 with self-aligning linear ball bearings  
 LBCF  
 open design




LTCF with 2 double lip seals

| Designation   | m     | Fw | A   | C   | Da | H  | H1 | H2   | H3 |
|---------------|-------|----|-----|-----|----|----|----|------|----|
|               |       |    |     |     |    |    |    |      |    |
| -             | kg    | mm | mm  | mm  | mm | mm | mm | mm   | mm |
| LTCF 12 D     | 0.189 | 12 | 76  | 32  | 22 | 18 | 29 | 23.5 | 13 |
| LTCF 12 D-2LS | 0.189 | 12 | 76  | 32  | 22 | 18 | 29 | 23.5 | 13 |
| LTCF 16 D     | 0.296 | 16 | 84  | 36  | 26 | 22 | 35 | 28.0 | 13 |
| LTCF 16 D-2LS | 0.296 | 16 | 84  | 36  | 26 | 22 | 35 | 28.0 | 13 |
| LTCF 20 D     | 0.541 | 20 | 104 | 45  | 32 | 25 | 42 | 33.5 | 18 |
| LTCF 20 D-2LS | 0.541 | 20 | 104 | 45  | 32 | 25 | 42 | 33.5 | 18 |
| LTCF 25 D     | 1.000 | 25 | 130 | 58  | 40 | 30 | 51 | 40.0 | 22 |
| LTCF 25 D-2LS | 1.000 | 25 | 130 | 58  | 40 | 30 | 51 | 40.0 | 22 |
| LTCF 30 D     | 1.544 | 30 | 152 | 68  | 47 | 35 | 60 | 46.5 | 26 |
| LTCF 30 D-2LS | 1.544 | 30 | 152 | 68  | 47 | 35 | 60 | 46.5 | 26 |
| LTCF 40       | 2.814 | 40 | 176 | 80  | 62 | 45 | 77 | 61.0 | 34 |
| LTCF 40-2LS   | 2.814 | 40 | 176 | 80  | 62 | 45 | 77 | 61.0 | 34 |
| LTCF 50       | 4.840 | 50 | 224 | 100 | 75 | 50 | 88 | 72.0 | 34 |
| LTCF 50-2LS   | 4.840 | 50 | 224 | 100 | 75 | 50 | 88 | 72.0 | 34 |



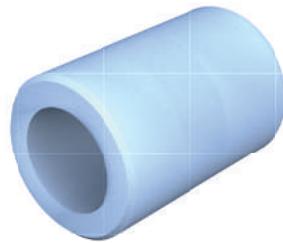
LTCF



LTCF

| J   | J <sub>1</sub> | L   | N    | N <sub>1</sub> | E    | a  | C    | C     | C <sub>0</sub> | C <sub>0</sub> |
|-----|----------------|-----|------|----------------|------|----|------|-------|----------------|----------------|
|     |                |     |      |                |      |    |      | min.  | max.           | min.           |
| mm  | mm             | mm  | mm   | -              | mm   | °  | N    | N     | N              | N              |
| 30  | 40             | 42  | 5.3  | M6             | 7.6  | 78 | 980  | 1760  | 830            | 1700           |
| 30  | 40             | 42  | 5.3  | M6             | 7.6  | 78 | 980  | 1760  | 830            | 1700           |
| 36  | 45             | 50  | 5.3  | M6             | 10.4 | 78 | 1080 | 2160  | 965            | 2240           |
| 36  | 45             | 50  | 5.3  | M6             | 10.4 | 78 | 1080 | 2160  | 965            | 2240           |
| 45  | 55             | 60  | 6.4  | M8             | 10.8 | 60 | 2360 | 4050  | 1830           | 3660           |
| 45  | 55             | 60  | 6.4  | M8             | 10.8 | 60 | 2360 | 4050  | 1830           | 3660           |
| 54  | 70             | 74  | 8.4  | M10            | 13.2 | 60 | 3750 | 6300  | 2450           | 4900           |
| 54  | 70             | 74  | 8.4  | M10            | 13.2 | 60 | 3750 | 6300  | 2450           | 4900           |
| 62  | 85             | 84  | 10.5 | M12            | 14.2 | 50 | 5300 | 9300  | 3900           | 7800           |
| 62  | 85             | 84  | 10.5 | M12            | 14.2 | 50 | 5300 | 9300  | 3900           | 7800           |
| 80  | 100            | 108 | 13.0 | M16            | 18.7 | 50 | 5500 | 12700 | 4550           | 10400          |
| 80  | 100            | 108 | 13.0 | M16            | 18.7 | 50 | 5500 | 12700 | 4550           | 10400          |
| 100 | 125            | 130 | 13.0 | M16            | 23.6 | 50 | 8000 | 18300 | 6000           | 14000          |
| 100 | 125            | 130 | 13.0 | M16            | 23.6 | 50 | 8000 | 18300 | 6000           | 14000          |

## 9 Linear plain bearings of the compact range


### 9.1 Product design

Linear plain bearings are particularly suitable for applications involving high shock loads, vibrations, or shock load at limited travel speeds. They are made of copolymer polyoxymethylene with specific polyethylene additives, ensuring smooth, stick-slip-free operation. The maximum permissible surface pressure is 14 N/mm<sup>2</sup>. Under normal operating conditions, linear plain bearings are self-lubricating and virtually maintenance free. To improve the running-in behavior, Schaeffler recommends lightly greasing the bearings during installation. Linear plain bearings have the same dimensions as linear ball bearings and, like the compact range of linear ball bearings, are self-retaining in a suitable housing.

Characteristics and designs of linear plain bearings:

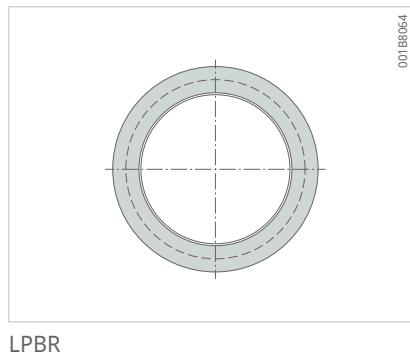
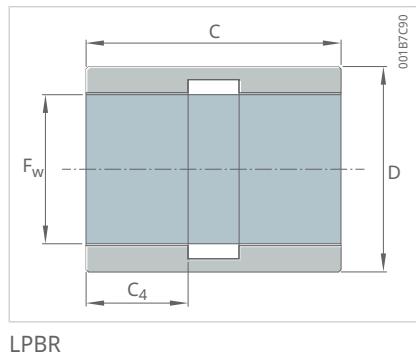
- sizes from 12 to 50 mm
- self-retaining in a suitable housing
- no additional axial fixation of the linear plain bearing is required when installed in a housing with bore diameter  $D_h$  and tolerance J7 or J6
- self-lubricating
- dimensionally interchangeable with linear ball bearings LBBR

④ 68 Linear plain bearing LPBR



001B6F40

## 9.2 Product tables



### 9.2.1 Explanations

|       |    |                                    |
|-------|----|------------------------------------|
| C     | mm | Length                             |
| C     | N  | Basic dynamic load rating          |
| $C_0$ | N  | Basic static load rating           |
| $C_4$ | mm | Width of sliding surface           |
| D     | mm | Outside diameter                   |
| $D_h$ | mm | Bore diameter                      |
| $F_w$ | mm | Inscribed diameter of the ball set |
| m     | kg | Mass                               |

## 9.2.2 Linear plain bearing LPBR

9

| Designation | m     | F <sub>w</sub> | D     | D <sub>h</sub> |
|-------------|-------|----------------|-------|----------------|
| -           | kg    | mm             | mm    | mm             |
| LPBR 12     | 0.006 | 12             | 19.19 | 19             |
| LPBR 14     | 0.007 | 14             | 21.21 | 21             |
| LPBR 16     | 0.009 | 16             | 24.23 | 24             |
| LPBR 20     | 0.011 | 20             | 28.24 | 28             |
| LPBR 25     | 0.024 | 25             | 35.25 | 35             |
| LPBR 30     | 0.033 | 30             | 40.27 | 40             |
| LPBR 40     | 0.064 | 40             | 52.32 | 52             |
| LPBR 50     | 0.089 | 50             | 62.35 | 62             |



| C<br>mm | C <sub>4</sub><br>mm | C               |               | C <sub>0</sub><br>N |
|---------|----------------------|-----------------|---------------|---------------------|
|         |                      | at 0.1 m/s<br>N | at 4 m/s<br>N |                     |
| 28      | 10                   | 965             | 24            | 3350                |
| 28      | 12                   | 1340            | 34            | 4750                |
| 30      | 12                   | 1530            | 38            | 5400                |
| 30      | 13                   | 2080            | 52            | 7350                |
| 40      | 17                   | 3400            | 85            | 12000               |
| 50      | 20                   | 4800            | 120           | 17000               |
| 60      | 24                   | 7650            | 193           | 27000               |
| 70      | 27                   | 10800           | 270           | 38000               |

## 10 Linear plain bearing units of the compact range

### 10.1 Product design

Linear plain bearing units of the compact range consist of a linear plain bearing and an aluminum housing. These units are extremely compact, cost-effective, and lightweight. Schaeffler offers various types of linear bearing units to meet the demand for flexible slide designs in terms of width and length through modular standard products. Under normal operating conditions, the plain bearing units are self-lubricating and virtually maintenance free. To complete the linear guide system, precision shafts and shaft blocks are also required ►176|14, ►162|13.

Characteristics and designs of linear plain bearing units:

- sizes from 12 to 50
- self-lubricating
- suitable for screw mounting from above or below

**!** The specified maximum static load rating applies only when the load acts on the housing exclusively in the direction of the red arrow.

LUHR PB

- aluminum housing extending over the full bearing length

LUJR PB

- with 2 external shaft seals for harsh ambient conditions
- maximum running speed 3 m/s

LTBR PB

- tandem aluminum housing with 2 integrated bearings

#### 10.1.1 Linear plain bearing units of the compact range

Linear plain bearing units of the compact range LUHR PB and LUJR PB consist of a closed aluminum housing and a linear plain bearing LPBR. Linear plain bearing units LUJR PB are identical in design to LUHR PB, but are fitted with 2 additional external shaft seals for applications with increased contamination exposure and therefore feature a longer housing.

69 Linear plain bearing units of the compact range LUHR PB



001C3F19

Linear plain bearing units LUHR PB and LUJR PB are suitable for constructing a wide range of flexible designs or compact linear slide configurations.

### 10.1.2 Tandem plain bearing units of the compact range

Tandem plain bearing units of the compact range LTBR PB consist of 2 LPBR plain bearings mounted in an aluminum housing. The units LTBR PB are particularly suitable for table or slide constructions of any width and can be mounted from above or below.

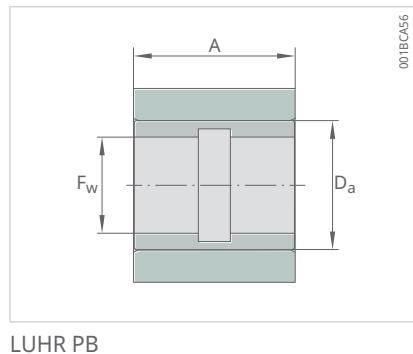
70 Tandem plain bearing units of the compact range LTBR PB



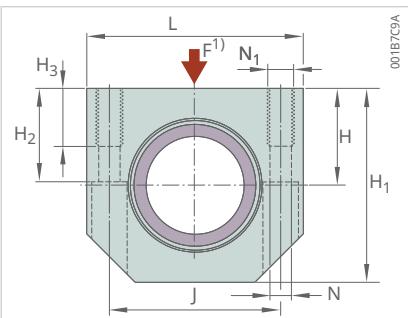
10

001C3F10

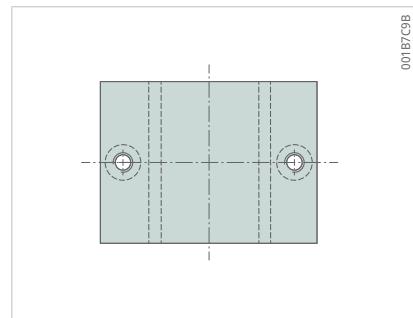
## 10.2 Product tables


### 10.2.1 Explanations

|       |    |                                      |
|-------|----|--------------------------------------|
| (1)   | -  | Load direction for max. load ratings |
| A     | mm | Length                               |
| C     | N  | Basic dynamic load rating            |
| C     | mm | Length                               |
| $C_0$ | N  | Basic static load rating             |
| $D_a$ | mm | Bore diameter                        |
| $F_w$ | mm | Inscribed diameter of the ball set   |
| H     | mm | Center height                        |
| $H_1$ | mm | Height                               |
| $H_2$ | mm | Height                               |
| $H_3$ | mm | Height                               |
| J     | mm | Distance                             |
| $J_1$ | mm | Distance                             |
| L     | mm | Width                                |
| m     | kg | Mass                                 |
| N     | mm | Bore diameter                        |
| $N_1$ | -  | Thread size                          |


## 10.2.2 Plain bearing units

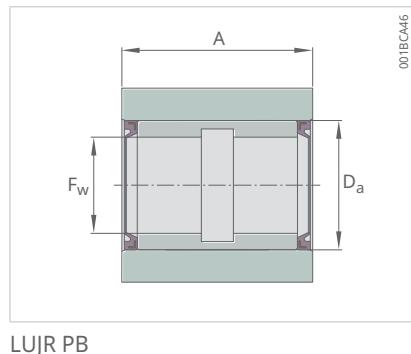
LUHR PB


with linear plain bearings LPBR



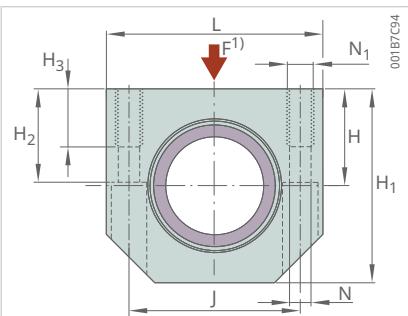
| Designation | m     | F <sub>w</sub> | A  | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|-------------|-------|----------------|----|----------------|----|----------------|----------------|----------------|
| -           | kg    | mm             | mm | mm             | mm | mm             | mm             | mm             |
| LUHR 12 PB  | 0.074 | 12             | 28 | 19             | 17 | 33             | 16             | 11             |
| LUHR 16 PB  | 0.091 | 16             | 30 | 24             | 19 | 38             | 18             | 11             |
| LUHR 20 PB  | 0.130 | 20             | 30 | 28             | 23 | 45             | 22             | 13             |
| LUHR 25 PB  | 0.227 | 25             | 40 | 35             | 27 | 54             | 26             | 18             |
| LUHR 30 PB  | 0.333 | 30             | 50 | 40             | 30 | 60             | 29             | 18             |
| LUHR 40 PB  | 0.674 | 40             | 60 | 52             | 39 | 76             | 38             | 22             |
| LUHR 50 PB  | 1.099 | 50             | 70 | 62             | 47 | 92             | 46             | 26             |



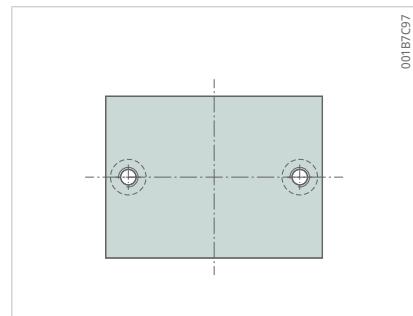

LUHR PB



LUHR PB


| L<br>mm | J<br>mm | N<br>mm | N1<br>- | C               |               | C0<br>N |
|---------|---------|---------|---------|-----------------|---------------|---------|
|         |         |         |         | at 0.1 m/s<br>N | at 4 m/s<br>N |         |
| 40      | 29      | 4.3     | M5      | 965             | 24            | 3350    |
| 45      | 34      | 4.3     | M5      | 1530            | 38            | 5400    |
| 53      | 40      | 5.3     | M6      | 2080            | 52            | 7350    |
| 62      | 48      | 6.6     | M8      | 3400            | 85            | 12000   |
| 67      | 53      | 6.6     | M8      | 4800            | 120           | 17000   |
| 87      | 69      | 8.4     | M10     | 7650            | 193           | 27000   |
| 103     | 82      | 10.5    | M12     | 10800           | 270           | 38000   |

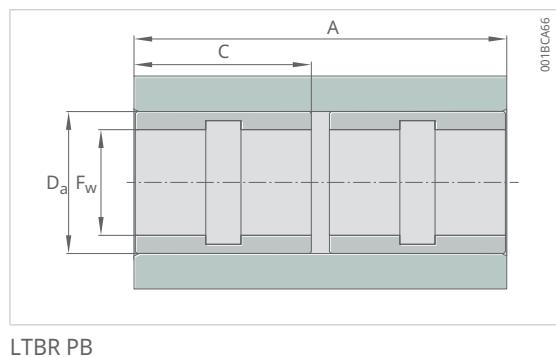
**10.2.3 Plain bearing units LUJR PB**  
 with linear plain bearings LPBR  
 with external shaft seals



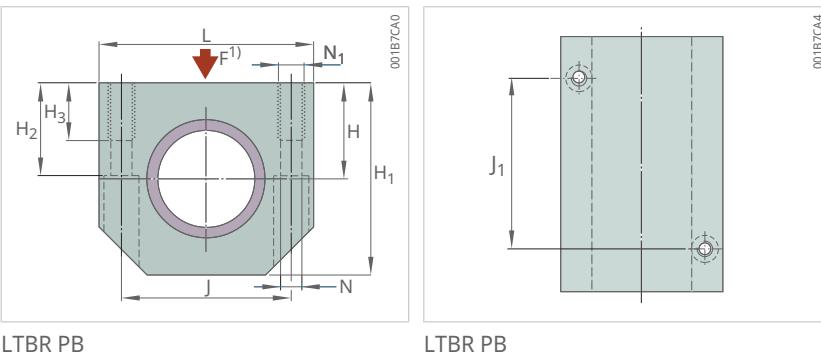

LUJR PB

| Designation | m    | F <sub>w</sub> | A  | D <sub>a</sub> | H  |       | H <sub>1</sub> | H <sub>2</sub> |
|-------------|------|----------------|----|----------------|----|-------|----------------|----------------|
|             |      |                |    |                | mm | ±0.01 |                |                |
| -           | kg   | mm             | mm | mm             | mm | mm    | mm             | mm             |
| LUJR 12 PB  | 0.09 | 12             | 35 | 19             | 17 | 33    | 16             |                |
| LUJR 16 PB  | 0.11 | 16             | 37 | 24             | 19 | 38    | 18             |                |
| LUJR 20 PB  | 0.17 | 20             | 39 | 28             | 23 | 45    | 22             |                |
| LUJR 25 PB  | 0.28 | 25             | 49 | 35             | 27 | 54    | 26             |                |
| LUJR 30 PB  | 0.40 | 30             | 59 | 40             | 30 | 60    | 29             |                |
| LUJR 40 PB  | 0.79 | 40             | 71 | 52             | 39 | 76    | 38             |                |
| LUJR 50 PB  | 1.28 | 50             | 81 | 62             | 47 | 92    | 46             |                |




LUJR PB




LUJR PB

| H <sub>3</sub><br>mm | L<br>mm | J<br>mm | N<br>mm | N <sub>1</sub><br>- | C               |               | C <sub>0</sub><br>N |
|----------------------|---------|---------|---------|---------------------|-----------------|---------------|---------------------|
|                      |         |         |         |                     | at 0.1 m/s<br>N | at 4 m/s<br>N |                     |
| 11                   | 40      | 29      | 4.3     | M5                  | 965             | 24            | 3350                |
| 11                   | 45      | 34      | 4.3     | M5                  | 1530            | 38            | 5400                |
| 13                   | 53      | 40      | 5.3     | M6                  | 2080            | 52            | 7350                |
| 18                   | 62      | 48      | 6.6     | M8                  | 3400            | 85            | 12000               |
| 18                   | 67      | 53      | 6.6     | M8                  | 4800            | 120           | 17000               |
| 22                   | 87      | 69      | 8.4     | M10                 | 7650            | 193           | 27000               |
| 26                   | 103     | 82      | 10.5    | M12                 | 10800           | 270           | 38000               |

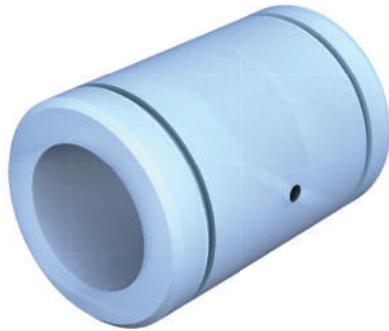
### 10.2.4 Tandem plain bearing units LTBR PB with linear plain bearings LPBR



| Designation | m    | F <sub>w</sub> | A   | C  | Da | H  |    | H <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> |
|-------------|------|----------------|-----|----|----|----|----|----------------|----------------|----------------|
|             |      |                |     |    |    | mm | mm |                |                |                |
| -           | kg   | mm             | mm  | mm | mm |    |    |                |                |                |
| LTBR 12 PB  | 0.16 | 12             | 60  | 28 | 19 | 17 | 33 | 16             | 11             |                |
| LTBR 16 PB  | 0.21 | 16             | 65  | 30 | 24 | 19 | 38 | 18             | 11             |                |
| LTBR 20 PB  | 0.29 | 20             | 65  | 30 | 28 | 23 | 45 | 22             | 13             |                |
| LTBR 25 PB  | 0.52 | 25             | 85  | 40 | 35 | 27 | 54 | 26             | 18             |                |
| LTBR 30 PB  | 0.75 | 30             | 105 | 50 | 40 | 30 | 60 | 29             | 18             |                |
| LTBR 40 PB  | 1.50 | 40             | 125 | 60 | 52 | 39 | 76 | 38             | 22             |                |
| LTBR 50 PB  | 2.38 | 50             | 145 | 70 | 62 | 47 | 92 | 46             | 26             |                |



LTBR PB


LTBR PB

| J  | J <sub>1</sub> | L   | N    | N <sub>1</sub> | C          |          | C <sub>0</sub> |
|----|----------------|-----|------|----------------|------------|----------|----------------|
|    |                |     |      |                | at 0.1 m/s | at 4 m/s |                |
| mm | mm             | mm  | mm   | -              | N          | N        | N              |
| 29 | 35             | 40  | 4.3  | M5             | 1930       | 48       | 6700           |
| 34 | 40             | 45  | 4.3  | M5             | 3060       | 76       | 10800          |
| 40 | 45             | 53  | 5.3  | M6             | 4160       | 104      | 14700          |
| 48 | 55             | 62  | 6.6  | M8             | 6800       | 170      | 24000          |
| 53 | 70             | 67  | 6.6  | M8             | 9600       | 240      | 34000          |
| 69 | 85             | 87  | 8.4  | M10            | 15300      | 386      | 54000          |
| 82 | 100            | 103 | 10.5 | M12            | 21600      | 540      | 76000          |

# 11 Linear plain bearings of the standard range

## 11.1 Product design

71 Linear plain bearing LPAR



001B7004

Linear plain bearings are particularly suitable for applications involving high shock loads, vibrations, or shock load at limited travel speeds. They are made of copolymer polyoxymethylene with specific polyethylene additives, ensuring smooth, stick-slip-free operation. The maximum permissible surface pressure is 14 N/mm<sup>2</sup>. Under normal operating conditions, linear plain bearings are self-lubricating and virtually maintenance free. To improve the running-in behavior, Schaeffler recommends lightly greasing the bearings during installation. Linear plain bearings have the same dimensions as linear ball bearings

Characteristics and designs of linear plain bearings LPAR and LPAT, closed and open design:

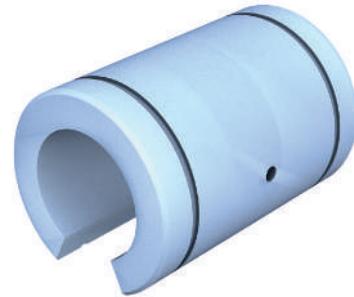
- self-lubricating material
- interchangeable with linear ball bearings of the standard range due to identical external dimensions
- equipped with lubrication port
- compatible with grease fitting VN-LHC for axial fixation ►44 | 1.10.3

### 11.1.1 Linear plain bearings in closed design

Linear plain bearings of the standard range LPAR are available for shaft diameters from 5 mm to 80 mm.

72 Linear plain bearings in closed design LPAR




001C3FOE

### 11.1.2 Linear plain bearings in open design

Linear plain bearings of the standard range LPAT are available for shaft diameters from 12 mm to 80 mm.

11

73 Linear plain bearings in open design LPAT

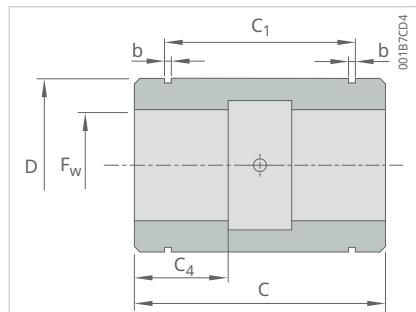


001C3FOF

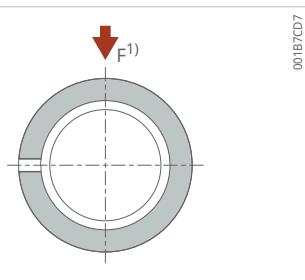
## 11.2 Product tables

### 11.2.1 Explanations

|       |    |                                      |
|-------|----|--------------------------------------|
| (1)   | -  | Load direction for max. load ratings |
| b     | mm | Groove width                         |
| C     | mm | Length                               |
| C     | N  | Basic dynamic load rating            |
| $C_0$ | N  | Basic static load rating             |
| $C_1$ | mm | Distance of grooves                  |
| $C_4$ | mm | Width of sliding surface             |
| D     | mm | Outside diameter                     |
| E     | mm | Width of cutout                      |
| $F_w$ | mm | Inscribed diameter of the ball set   |
| m     | kg | Mass                                 |
| a     | °  | Opening angle                        |


## 11.2.2 Linear plain bearing

LPAR


closed

| Designation <sup>1)</sup> | m     | F <sub>w</sub> | D   | C   | C <sub>1</sub> |
|---------------------------|-------|----------------|-----|-----|----------------|
| -                         | kg    | mm             | mm  | mm  | mm             |
| LPAR 5                    | 0.003 | 5              | 12  | 22  | 14.2           |
| LPAR 8                    | 0.005 | 8              | 16  | 25  | 16.2           |
| LPAR 12                   | 0.010 | 12             | 22  | 32  | 22.6           |
| LPAR 16                   | 0.015 | 16             | 26  | 36  | 24.6           |
| LPAR 20                   | 0.028 | 20             | 32  | 45  | 31.2           |
| LPAR 25                   | 0.055 | 25             | 40  | 58  | 43.7           |
| LPAR 30                   | 0.086 | 30             | 47  | 68  | 51.7           |
| LPAR 40                   | 0.180 | 40             | 62  | 80  | 60.3           |
| LPAR 50                   | 0.310 | 50             | 75  | 100 | 77.3           |
| LPAR 60                   | 0.560 | 60             | 90  | 125 | 101.3          |
| LPAR 80                   | 1.320 | 80             | 120 | 165 | 133.3          |

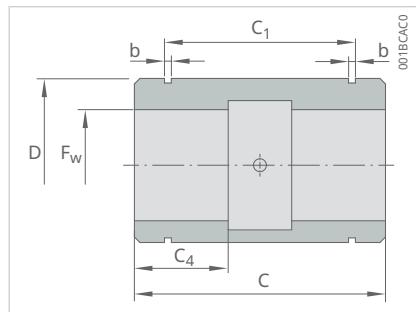
<sup>1)</sup> For LPAR 5, LPAR 8: no fixing bore or lubrication port



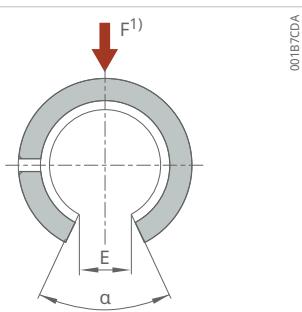
LPAR, closed design



LPAR, closed design


| b<br>min.<br>mm | C               |               | C <sub>0</sub><br>N |
|-----------------|-----------------|---------------|---------------------|
|                 | at 0.1 m/s<br>N | at 4 m/s<br>N |                     |
| 1.1             | 320             | 8             | 1120                |
| 1.1             | 570             | 14            | 2000                |
| 1.3             | 1060            | 26            | 3650                |
| 1.3             | 1680            | 43            | 5850                |
| 1.6             | 2700            | 68            | 9500                |
| 1.85            | 4400            | 110           | 15300               |
| 1.85            | 6000            | 150           | 20800               |
| 2.15            | 8650            | 216           | 30000               |
| 2.65            | 12700           | 320           | 45000               |
| 3.15            | 19300           | 480           | 67000               |
| 4.15            | 33500           | 830           | 116000              |

## 11.2.3 Linear plain bearing


LPAT

open design

| Designation | m     | F <sub>w</sub> | D   | C   | C <sub>1</sub> |
|-------------|-------|----------------|-----|-----|----------------|
| -           | kg    | mm             | mm  | mm  | mm             |
| LPAT 12     | 0.008 | 12             | 22  | 32  | 22.6           |
| LPAT 16     | 0.012 | 16             | 26  | 36  | 24.6           |
| LPAT 20     | 0.023 | 20             | 32  | 45  | 31.2           |
| LPAT 25     | 0.046 | 25             | 40  | 58  | 43.7           |
| LPAT 30     | 0.074 | 30             | 47  | 68  | 51.7           |
| LPAT 40     | 0.155 | 40             | 62  | 80  | 60.3           |
| LPAT 50     | 0.270 | 50             | 75  | 100 | 77.3           |
| LPAT 60     | 0.480 | 60             | 90  | 125 | 101.3          |
| LPAT 80     | 1.120 | 80             | 120 | 165 | 133.3          |



LPAT, open design



LPAT, open design

| b<br>min.<br>mm | E<br>mm | α<br>° | C               |               | C <sub>0</sub><br>N |
|-----------------|---------|--------|-----------------|---------------|---------------------|
|                 |         |        | at 0.1 m/s<br>N | at 4 m/s<br>N |                     |
| 1.3             | 11      | 7.6    | 1060            | 26            | 3650                |
| 1.3             | 13      | 10.4   | 1680            | 43            | 5850                |
| 1.6             | 17      | 10.8   | 2700            | 68            | 9500                |
| 1.85            | 22      | 13.2   | 4400            | 110           | 15300               |
| 1.85            | 25      | 14.2   | 6000            | 150           | 20800               |
| 2.15            | 27      | 18.7   | 8650            | 216           | 30000               |
| 2.65            | 32      | 23.6   | 12700           | 320           | 45000               |
| 3.15            | 40      | 29.6   | 19300           | 480           | 67000               |
| 4.15            | 52      | 38.4   | 33500           | 830           | 116000              |

## 12 Linear plain bearing units of the standard range

### 12.1 Product design

A comprehensive range of linear bearing units fitted with linear plain bearings from the standard range is available for the flexible design of slide assemblies. These units are the ideal choice for applications requiring flexibility in shaft spacing and slide length. A simpler slide structure can be achieved using tandem units with 2 bearings. A flanged bearing unit is also available, providing additional mounting options.

All open and closed units, with the exception of the flanged bearing units, are made of aluminum. Linear bearing units LUCR PA and LUCT PA made of die-cast material have a very low weight, minimizing acceleration forces and inertia forces. These high precision units have been structurally optimized to ensure high strength and rigidity. To complete the linear guide system, precision shafts and shaft blocks are also required ►176|14, ►162|13.

Characteristics and designs of linear bearing units:

- lightweight housing made of die-cast aluminum (LUCR PA, LUCT PA)
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with DIN ISO 4762
- self-lubricating material
- with grease fitting
- ready for operation



The specified maximum static load rating applies only when the load acts on the housing exclusively in the direction of the red arrow.

LUCR PA

- closed design

LVCR PA

- flanged housing with flexible screw mounting facility from the front of the flange or the rear
- high rigidity due to cast-iron housing

LTCR PA

- tandem unit
- aluminum housing with 2 bearings mounted in series

LUCT PA

- open design

#### 12.1.1 Linear plain bearing units of the standard range in closed design

Linear plain bearing units of the standard range LUCR PA offer flexible design options for the construction of linear slides. With their very low weight, they are ideal for applications involving low mass inertia. Linear plain bearing units LUCR PA are available for shaft diameters from 8 mm to 80 mm and are fitted with linear plain bearings LPAR. The plain bearings are made of self-lubricating material and can be relubricated via the grease fitting if required. The bearings are secured in the housing with a grease fitting and retaining rings.

74 Linear plain bearing units LUCR PA



001C3F15

### 12.1.2 Linear plain bearing units of the standard range with closed flanged housing

Linear plain bearing units with flanged housing LVCR PA provide flexible mounting options. The closed flanged housing of these bearing units is made of gray cast iron. Flanged units LVCR PA are available for shaft diameters from 12 mm to 80 mm and are fitted with linear bearings LPAR. Each linear plain bearing is axially retained in the housing by a pin and retaining rings. The flange is machined on both sides, allowing the linear bearing unit to be mounted from either the front or rear face. Linear plain bearing units with flanged housing can be relubricated via the shaft.

75 Linear plain bearing units with closed flanged housing LVCR PA



001C3F20

### 12.1.3 Tandem plain bearing units of the standard range

Closed tandem plain bearing units LTCR PA consist of a solid aluminum housing with 2 LPAR linear plain bearings of the standard range mounted in series. Tandem linear bearing units are ideal for linear guide systems of any required width. The units' mounting surface can be bolted from top or bottom side using suitable screws, and are available for shaft diameters from 12 mm to 50 mm. Tandem units can be relubricated via the grease fitting if required, which also serves to secure the bearing axially and against rotation.

76 Tandem plain bearing units LTCR PA



001C3F14

#### 12.1.4 Linear plain bearing units of the standard range in open design

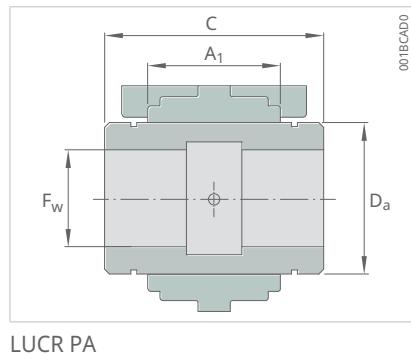
Linear bearing units of the standard range LUCT PA are open designs and are intended for applications with supported shafts operating under high loads and with long travel distances. Linear plain bearing units LUCT PA are available for shaft diameters from 12 mm to 80 mm and are fitted with linear plain bearings LPAT. The units can be relubricated via the grease fitting if required. The bearings are secured in the housing with a grease fitting and opposing grooved pin.

77 Linear plain bearing units LUCT PA in open design



001C3F17

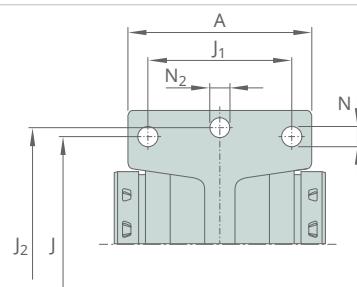
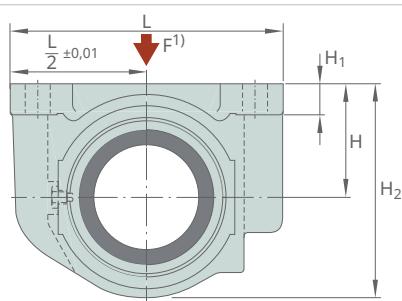
## 12.2 Product tables


### 12.2.1 Explanations

|          |    |                                      |
|----------|----|--------------------------------------|
| (1)      | -  | Load direction for max. load ratings |
| A        | mm | Length                               |
| $A_1$    | mm | Length                               |
| C        | mm | Length                               |
| C        | N  | Basic dynamic load rating            |
| $C_0$    | N  | Basic static load rating             |
| $D_2$    | mm | Diameter of centering collar         |
| $D_a$    | mm | Bore diameter                        |
| E        | mm | Width of cutout                      |
| $F_w$    | mm | Inscribed diameter of the ball set   |
| H        | mm | Center height                        |
| $H_1$    | mm | Height                               |
| $H_2$    | mm | Height                               |
| $H_3$    | mm | Height                               |
| J        | mm | Distance                             |
| $J_1$    | mm | Distance                             |
| $J_2$    | mm | Distance                             |
| L        | mm | Width                                |
| m        | kg | Mass                                 |
| N        | mm | Bore diameter                        |
| $N_1$    | -  | Thread size                          |
| $N_2$    | mm | Bore diameter                        |
| $\alpha$ | °  | Opening angle                        |

## 12.2.2 Plain bearing units

LUCR PA



with linear plain bearings LPAR

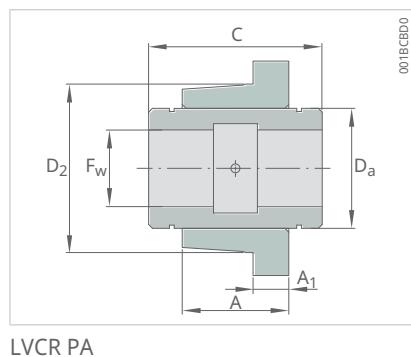


| Designation <sup>1)</sup> | m     | F <sub>w</sub> | A     | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> |    |
|---------------------------|-------|----------------|-------|----------------|-----|----------------|----|----------------|----------------|----|
|                           |       |                |       |                |     |                |    |                | mm             | mm |
| -                         | kg    | mm             | mm    | mm             | mm  | mm             | mm | mm             | mm             | mm |
| LUCR 8 PA                 | 0.023 | 8              | 27.0  | 14             | 25  | 16             | 15 | 6              | 28             |    |
| LUCR 12 PA                | 0.048 | 12             | 31.0  | 20             | 32  | 22             | 18 | 6              | 35             |    |
| LUCR 16 PA                | 0.065 | 16             | 34.5  | 22             | 36  | 26             | 22 | 7              | 41             |    |
| LUCR 20 PA                | 0.129 | 20             | 41.0  | 28             | 45  | 32             | 25 | 8              | 48             |    |
| LUCR 25 PA                | 0.255 | 25             | 52.0  | 40             | 58  | 40             | 30 | 10             | 58             |    |
| LUCR 30 PA                | 0.368 | 30             | 59.0  | 48             | 68  | 47             | 35 | 10             | 67             |    |
| LUCR 40 PA                | 0.656 | 40             | 74.0  | 56             | 80  | 62             | 45 | 12             | 85             |    |
| LUCR 50 PA                | 1.065 | 50             | 66.0  | 72             | 100 | 75             | 50 | 14             | 99             |    |
| LUCR 60 PA                | 1.900 | 60             | 84.0  | 95             | 125 | 90             | 60 | 18             | 118            |    |
| LUCR 80 PA                | 4.575 | 80             | 113.0 | 125            | 165 | 120            | 80 | 22             | 158            |    |

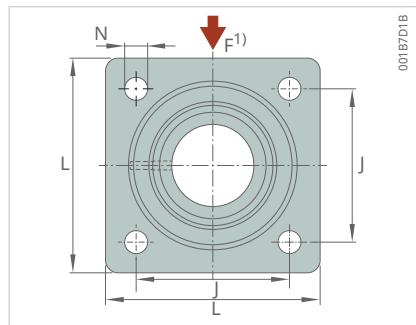
<sup>1)</sup> For size 8: fixation by means of retaining rings in accordance with DIN 471, no lubrication port

<sup>2)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02




LUCR PA

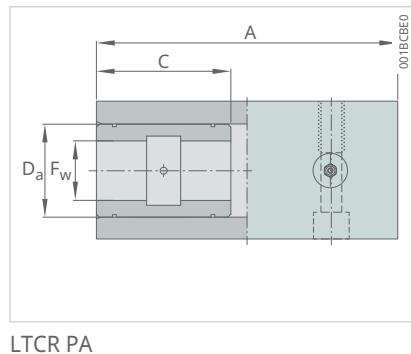
LUCR PA


| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>2)</sup> | N    | N <sub>2</sub> | C          | C        | C <sub>0</sub> |
|-----|----------------|----------------|-----------------|------|----------------|------------|----------|----------------|
|     |                |                |                 |      |                | at 0.1 m/s | at 4 m/s |                |
| mm  | mm             | mm             | mm              | mm   | mm             | N          | N        | N              |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | 570        | 14       | 2000           |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 1060       | 26       | 3650           |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 1680       | 43       | 5850           |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 2700       | 68       | 9500           |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 4400       | 110      | 15300          |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 6000       | 150      | 20800          |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 8650       | 216      | 30000          |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 12700      | 320      | 45000          |
| 132 | 65             | 138            | 160             | 10.5 | 13.0           | 19300      | 480      | 67000          |
| 170 | 90             | 180            | 205             | 13.0 | 13.0           | 33500      | 830      | 116000         |

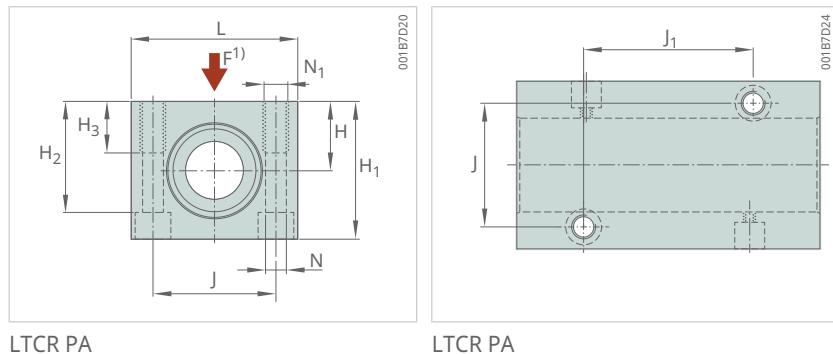
## 12.2.3 Flanged units LVCR PA

with linear plain bearings LPAR




| Designation | m      | F <sub>w</sub> | A   | A <sub>1</sub> | C   | D <sub>a</sub> | D <sub>2</sub> |
|-------------|--------|----------------|-----|----------------|-----|----------------|----------------|
| -           | kg     | mm             | mm  | mm             | mm  | mm             | mm             |
| LVCR 12 PA  | 0.107  | 12             | 20  | 8              | 32  | 22             | 32             |
| LVCR 16 PA  | 0.160  | 16             | 22  | 8              | 36  | 26             | 38             |
| LVCR 20 PA  | 0.298  | 20             | 28  | 10             | 45  | 32             | 46             |
| LVCR 25 PA  | 0.623  | 25             | 40  | 12             | 58  | 40             | 58             |
| LVCR 30 PA  | 0.950  | 30             | 48  | 14             | 68  | 47             | 66             |
| LVCR 40 PA  | 1.830  | 40             | 56  | 16             | 80  | 62             | 90             |
| LVCR 50 PA  | 3.144  | 50             | 72  | 18             | 100 | 75             | 110            |
| LVCR 60 PA  | 5.660  | 60             | 95  | 22             | 125 | 90             | 135            |
| LVCR 80 PA  | 12.720 | 80             | 125 | 25             | 165 | 120            | 180            |




LVCR PA

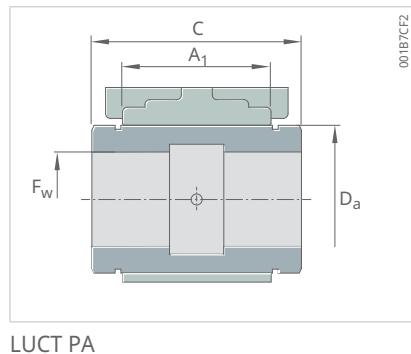
| J<br>mm | L<br>mm | N<br>mm | C<br>at 0.1 m/s | C<br>at 4 m/s | C <sub>0</sub><br>N |
|---------|---------|---------|-----------------|---------------|---------------------|
|         |         |         | N               | N             |                     |
| 30      | 42      | 5.5     | 1060            | 26            | 3650                |
| 35      | 50      | 5.5     | 1680            | 43            | 5850                |
| 42      | 60      | 6.6     | 2700            | 68            | 9500                |
| 54      | 74      | 6.6     | 4400            | 110           | 15300               |
| 60      | 84      | 9.0     | 6000            | 150           | 20800               |
| 78      | 108     | 11.0    | 8650            | 216           | 30000               |
| 98      | 130     | 11.0    | 12700           | 320           | 45000               |
| 120     | 160     | 13.5    | 19300           | 480           | 67000               |
| 155     | 200     | 13.5    | 33500           | 830           | 116000              |

### 12.2.4 Tandem plain bearing units LTCR PA with linear plain bearings LPAR



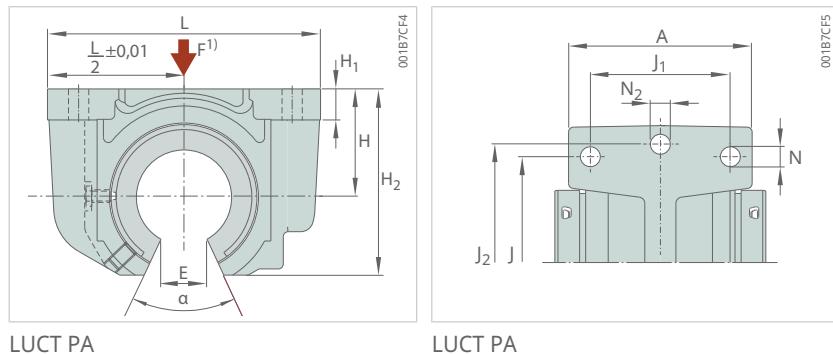
| Designation | m     | F <sub>w</sub> | A   | C   | D <sub>a</sub> | H  | H <sub>1</sub> |      |    | H <sub>2</sub> |    | H <sub>3</sub> |  |
|-------------|-------|----------------|-----|-----|----------------|----|----------------|------|----|----------------|----|----------------|--|
|             |       |                |     |     |                |    | ±0.01          |      |    |                |    |                |  |
| -           | kg    | mm             | mm  | mm  | mm             | mm | mm             | mm   | mm | mm             | mm |                |  |
| LTCR 12 PA  | 0.228 | 12             | 76  | 32  | 22             | 18 | 35.0           | 27.0 | 13 |                |    |                |  |
| LTCR 16 PA  | 0.365 | 16             | 84  | 36  | 26             | 22 | 41.5           | 33.0 | 13 |                |    |                |  |
| LTCR 20 PA  | 0.640 | 20             | 104 | 45  | 32             | 25 | 49.5           | 39.5 | 18 |                |    |                |  |
| LTCR 25 PA  | 1.176 | 25             | 130 | 58  | 40             | 30 | 59.5           | 47.0 | 22 |                |    |                |  |
| LTCR 30 PA  | 1.778 | 30             | 152 | 68  | 47             | 35 | 69.5           | 55.0 | 26 |                |    |                |  |
| LTCR 40 PA  | 3.397 | 40             | 176 | 80  | 62             | 45 | 89.5           | 71.0 | 34 |                |    |                |  |
| LTCR 50 PA  | 5.670 | 50             | 224 | 100 | 75             | 50 | 99.5           | 81.0 | 34 |                |    |                |  |




LTCR PA

LTCR PA

| J<br>mm | J <sub>1</sub><br>mm | L<br>mm | N<br>mm | N <sub>1</sub><br>- | C               |               | C <sub>0</sub><br>N |
|---------|----------------------|---------|---------|---------------------|-----------------|---------------|---------------------|
|         |                      |         |         |                     | at 0.1 m/s<br>N | at 4 m/s<br>N |                     |
| 30      | 40                   | 42      | 5.3     | M6                  | 2120            | 52            | 7300                |
| 36      | 45                   | 50      | 5.3     | M6                  | 3360            | 86            | 11700               |
| 45      | 55                   | 60      | 6.4     | M8                  | 5400            | 136           | 19000               |
| 54      | 70                   | 74      | 8.4     | M10                 | 8800            | 220           | 30600               |
| 62      | 85                   | 84      | 10.5    | M12                 | 12000           | 300           | 41600               |
| 80      | 100                  | 108     | 13.0    | M16                 | 17300           | 432           | 60000               |
| 100     | 125                  | 130     | 13.0    | M16                 | 25400           | 640           | 90000               |


## 12.2.5 Plain bearing units

LUCT PA

with linear plain bearings LPAT  
open design

| Designation | m     | F <sub>w</sub> | A   | A <sub>1</sub> | C   | D <sub>a</sub> | H  | H <sub>1</sub> | H <sub>2</sub> | J   |
|-------------|-------|----------------|-----|----------------|-----|----------------|----|----------------|----------------|-----|
|             |       |                |     |                |     |                |    |                |                |     |
| -           | kg    | mm             | mm  | mm             | mm  | mm             | mm | mm             | mm             | mm  |
| LUCT 12 PA  | 0.042 | 12             | 31  | 20             | 32  | 22             | 18 | 6              | 28             | 32  |
| LUCT 16 PA  | 0.057 | 16             | 35  | 22             | 36  | 26             | 22 | 7              | 35             | 40  |
| LUCT 20 PA  | 0.115 | 20             | 41  | 28             | 45  | 32             | 25 | 8              | 42             | 45  |
| LUCT 25 PA  | 0.225 | 25             | 52  | 40             | 58  | 40             | 30 | 10             | 51             | 60  |
| LUCT 30 PA  | 0.328 | 30             | 59  | 48             | 68  | 47             | 35 | 10             | 60             | 68  |
| LUCT 40 PA  | 0.564 | 40             | 74  | 56             | 80  | 62             | 45 | 12             | 77             | 86  |
| LUCT 50 PA  | 0.935 | 50             | 66  | 72             | 100 | 75             | 50 | 14             | 88             | 108 |
| LUCT 60 PA  | 1.663 | 60             | 84  | 95             | 125 | 90             | 60 | 18             | 105            | 132 |
| LUCT 80 PA  | 3.981 | 80             | 113 | 125            | 165 | 120            | 80 | 22             | 140            | 170 |

<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02



LUCT PA

LUCT PA

| J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N    | N <sub>2</sub> | E    | a  | C          | C        | C <sub>0</sub> |
|----------------|----------------|-----------------|------|----------------|------|----|------------|----------|----------------|
|                |                |                 |      |                |      |    | at 0.1 m/s | at 4 m/s |                |
| mm             | mm             | mm              | mm   | mm             | mm   | °  | N          | N        | N              |
| 23             | 42             | 52              | 4.3  | 5.3            | 7.6  | 78 | 1060       | 26       | 3650           |
| 26             | 46             | 56              | 4.3  | 5.3            | 10.4 | 78 | 1680       | 43       | 5850           |
| 32             | 58             | 70              | 4.3  | 6.4            | 10.8 | 60 | 2700       | 68       | 9500           |
| 40             | 68             | 80              | 5.3  | 6.4            | 13.2 | 60 | 4400       | 110      | 15300          |
| 45             | 76             | 88              | 6.4  | 6.4            | 14.2 | 50 | 6000       | 150      | 20800          |
| 58             | 94             | 108             | 8.4  | 8.4            | 18.7 | 50 | 8650       | 216      | 30000          |
| 50             | 116            | 135             | 8.4  | 10.5           | 23.6 | 50 | 12700      | 320      | 45000          |
| 65             | 138            | 160             | 10.5 | 13.0           | 29.6 | 54 | 19300      | 480      | 67000          |
| 90             | 180            | 205             | 13.0 | 13.0           | 38.4 | 54 | 33500      | 830      | 116000         |

## 13 Shaft blocks and shaft supports

Shaft blocks and shaft supports are standard components used for the simple construction of linear slides. Single shaft blocks are supposed to be used for linear bearing units in closed design with flexible shaft distance and length. In standard applications, they fix the end of the shaft to the surface. Shaft supports are used with linear units in the open design and applied along the entire shaft length to prevent shaft deflection.

### 13.1 Product design

#### 13.1.1 Shaft blocks made of die-cast aluminum

The lightweight shaft blocks LSCS are suitable for all bearing units and enable secure location of the shaft position. The shaft blocks can be mounted from above or below and include a reference side for linear alignment.

Characteristics and designs of shaft blocks LSCS:

- sizes from 8 mm to 80 mm
- lightweight housing made of die-cast aluminum
- shaft clamping screw inserted from above
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with DIN ISO 4762
- 2 different hole patterns for mounting purposes
- reference side for linear alignment
- precise and secure shaft location
- LSCS 80A and LSCS 8 are not die-cast and have no forming slopes

78 Shaft blocks LSCS



001B70EC

#### 13.1.2 Shaft blocks made of aluminum

Aluminum shaft blocks LSHS and LSNS enable secure fixation of the shaft position. Shaft blocks LSHS are designed for use with linear bearing units of the compact range, while shaft blocks LSNS are matched to the design of linear bearing units of the standard range. The shaft blocks can be screwed to the mounting surface from both sides.

Characteristics and designs of shaft blocks LSHS and LSNS:

- sizes from 12 mm to 50 mm
- shaft clamping screw inserted from the side
- suitable for screw mounting from above or below
- optimized for mounting with hexagon socket head cap screws in accordance with DIN ISO 4762
- reference side for linear alignment
- precise and secure shaft location

⊕79 Shaft blocks LSHS and LSNS



13

001B70FC

### 13.1.3 Shaft support

⊕80 Shaft supports LRCB and LRCC



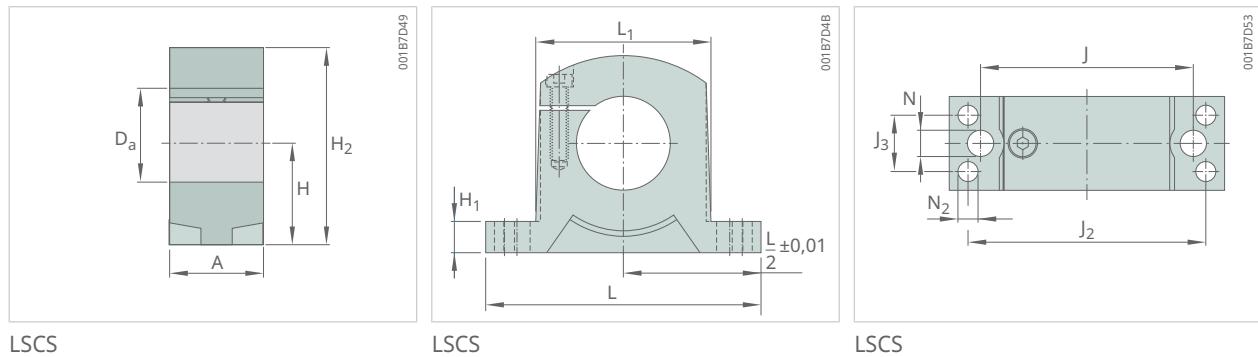
001B7129

Shaft supports LRCB and LRCC are suitable for use with linear bearing units of the standard range in open design, where the shaft support prevents shaft deflection under high loads. Aluminum shaft supports can be used for partial sections, however, use over the entire shaft length is recommended. Shaft supports LRCB feature a pre-drilled hole pattern for mounting and direct screw fastening to standard shafts with the standard ESSC 6 hole pattern, while shaft supports LRCC feature finish-machined tolerances for customer-specific mounting holes.

Characteristics and designs of shaft supports LRCB and LRCC:

- LRCB with mounting holes, optimized for mounting with hexagon socket head cap screws in accordance with DIN ISO 4762
- LRCC for customer-specific mounting holes
- for all linear bearings and linear bearing units in open design
- for complete or partial shaft support
- suitable for screw mounting from above or below

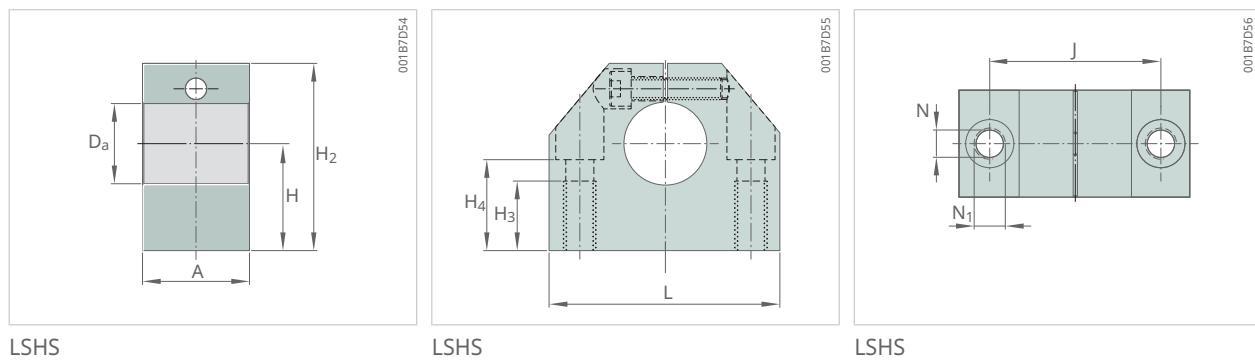
## 13.2 Product tables


### 13.2.1 Explanations

|                |    |                        |
|----------------|----|------------------------|
| A              | mm | Width of shaft support |
| A              | mm | Length                 |
| d              | mm | Shaft diameter         |
| D <sub>a</sub> | mm | Bore diameter          |
| H              | mm | Center height          |
| H <sub>1</sub> | mm | Height                 |
| H <sub>2</sub> | mm | Height                 |
| H <sub>3</sub> | mm | Height                 |
| H <sub>4</sub> | mm | Height                 |
| J              | mm | Distance               |
| J <sub>1</sub> | mm | Distance               |
| J <sub>2</sub> | mm | Distance               |
| J <sub>3</sub> | mm | Distance               |
| L              | mm | Width                  |
| L <sub>1</sub> | mm | Width                  |
| m              | kg | Mass                   |
| M              | mm | Width                  |
| N              | mm | Bore diameter          |
| N <sub>1</sub> | -  | Thread size            |
| N <sub>1</sub> | mm | Bore diameter          |
| N <sub>2</sub> | mm | Bore diameter          |
| β              | °  | Angle                  |

## 13.2.2 Shaft blocks LSCS

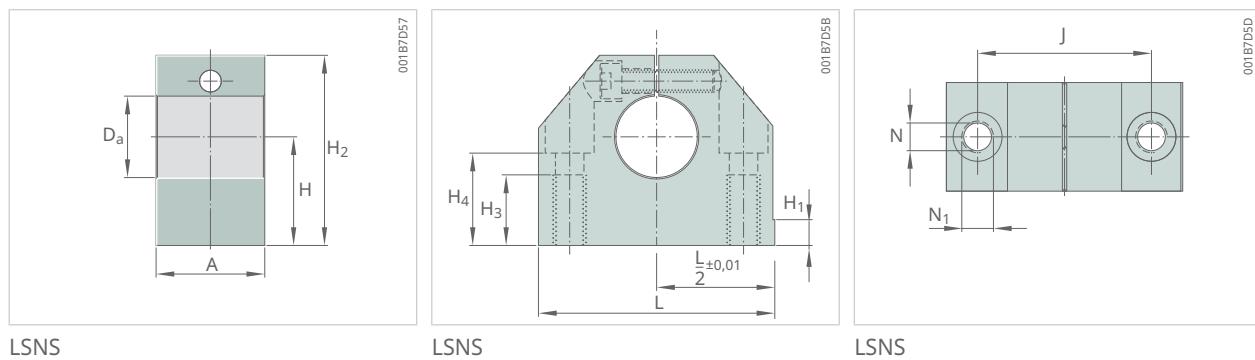
| Designation | m     | D <sub>a</sub> | A  | H     | H <sub>1</sub> | H <sub>2</sub> |
|-------------|-------|----------------|----|-------|----------------|----------------|
|             |       |                |    | ±0.01 |                |                |
| -           | kg    | mm             | mm | mm    | mm             | mm             |
| LSCS 8      | 0.012 | 8              | 10 | 15    | 5.5            | 25             |
| LSCS 12     | 0.023 | 12             | 12 | 20    | 6              | 32.5           |
| LSCS 16     | 0.034 | 16             | 15 | 20    | 7              | 35.5           |
| LSCS 20     | 0.065 | 20             | 20 | 25    | 8              | 43.5           |
| LSCS 25     | 0.140 | 25             | 28 | 30    | 10             | 53             |
| LSCS 30     | 0.200 | 30             | 30 | 35    | 10             | 63             |
| LSCS 40     | 0.470 | 40             | 36 | 45    | 12             | 81             |
| LSCS 50     | 0.680 | 50             | 49 | 50    | 14             | 92.5           |
| LSCS 60     | 1.290 | 60             | 62 | 60    | 18             | 112            |
| LSCS 80 A   | 3.150 | 80             | 85 | 80    | 22             | 147.5          |


<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02



| J   | J <sub>2</sub> | J <sub>3</sub> | L <sup>1)</sup> | L <sub>1</sub> | N    | N <sub>2</sub> |
|-----|----------------|----------------|-----------------|----------------|------|----------------|
| mm  | mm             | mm             | mm              | mm             | mm   | mm             |
| 25  | 35             | 5              | 45              | 19             | 4.3  | 2.7            |
| 32  | 42             | 6              | 52              | 25             | 5.3  | 3.2            |
| 40  | 46             | 7.5            | 56              | 31.8           | 5.3  | 4.3            |
| 45  | 58             | 10             | 70              | 37             | 5.3  | 5.3            |
| 60  | 68             | 16             | 80              | 48             | 6.4  | 6.4            |
| 68  | 76             | 18             | 88              | 56             | 8.4  | 6.4            |
| 86  | 94             | 22             | 108             | 71             | 10.5 | 8.4            |
| 108 | 116            | 30             | 135             | 86             | 10.5 | 10.5           |
| 132 | 138            | 40             | 160             | 105            | 13   | 13             |
| 170 | 180            | 60             | 205             | 136            | 17   | 15             |

### 13.2.3 Shaft blocks LSHS of the compact range

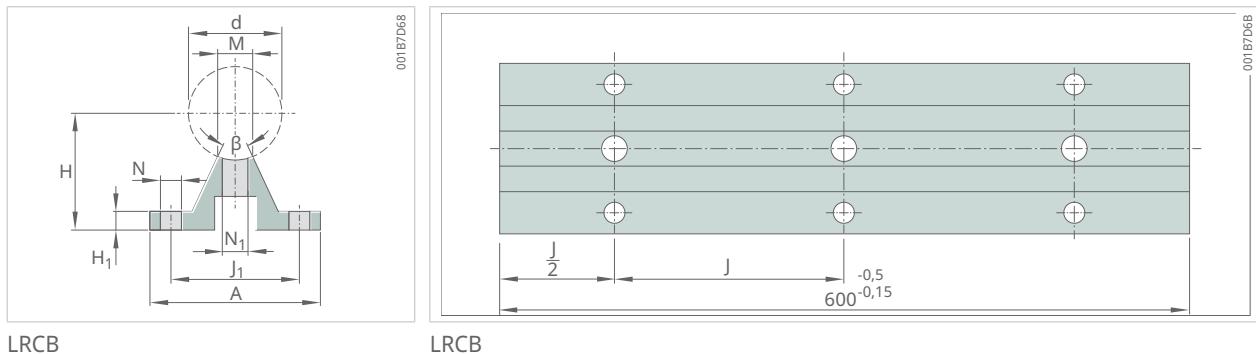

| Designation | m    | ISO series | D <sub>a</sub> | A  | H     | H <sub>2</sub> |
|-------------|------|------------|----------------|----|-------|----------------|
|             |      |            |                |    | ±0.01 |                |
| -           | kg   | -          | mm             | mm | mm    | mm             |
| LSHS 12     | 0.05 | 1          | 12             | 18 | 19    | 33             |
| LSHS 16     | 0.07 | 1          | 16             | 20 | 22    | 38             |
| LSHS 20     | 0.11 | 1          | 20             | 24 | 25    | 45             |
| LSHS 25     | 0.17 | 1          | 25             | 28 | 31    | 54             |
| LSHS 30     | 0.22 | 1          | 30             | 30 | 34    | 60             |
| LSHS 40     | 0.47 | 1          | 40             | 40 | 42    | 76             |
| LSHS 50     | 0.82 | 1          | 50             | 50 | 50    | 92             |



| <b>H<sub>3</sub></b> | <b>H<sub>4</sub></b> | <b>J</b>  | <b>L</b>  | <b>N</b>  | <b>N<sub>1</sub></b> |
|----------------------|----------------------|-----------|-----------|-----------|----------------------|
| <b>mm</b>            | <b>mm</b>            | <b>mm</b> | <b>mm</b> | <b>mm</b> | <b>-</b>             |
| 13                   | 16.5                 | 27        | 40        | 5.3       | M6                   |
| 13                   | 18                   | 32        | 45        | 5.3       | M6                   |
| 18                   | 21                   | 39        | 53        | 6.6       | M8                   |
| 22                   | 25                   | 44        | 62        | 8.4       | M10                  |
| 22                   | 29                   | 49        | 67        | 8.4       | M10                  |
| 26                   | 37                   | 66        | 87        | 10.5      | M12                  |
| 34                   | 44                   | 80        | 103       | 13.5      | M16                  |

## 13.2.4 Shaft blocks LSNS

| Designation | m    | ISO series | D <sub>a</sub> | A  | H     | H <sub>1</sub> |
|-------------|------|------------|----------------|----|-------|----------------|
|             |      |            |                |    | ±0.01 |                |
| -           | kg   | -          | mm             | mm | mm    | mm             |
| LSNS 12     | 0.06 | 3          | 12             | 20 | 20    | 6              |
| LSNS 16     | 0.11 | 3          | 16             | 24 | 25    | 7              |
| LSNS 20     | 0.17 | 3          | 20             | 30 | 30    | 7.5            |
| LSNS 25     | 0.34 | 3          | 25             | 38 | 35    | 8.5            |
| LSNS 30     | 0.46 | 3          | 30             | 40 | 40    | 9.5            |
| LSNS 40     | 0.90 | 3          | 40             | 48 | 50    | 11             |
| LSNS 50     | 1.45 | 3          | 50             | 58 | 60    | 11             |

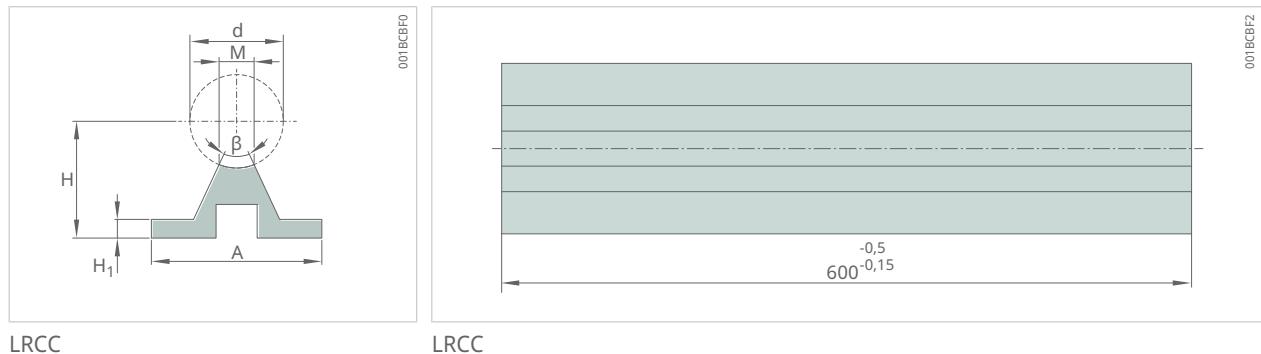



| H <sub>2</sub> | H <sub>3</sub> | H <sub>4</sub> | J   | L   | N    | N <sub>1</sub> |
|----------------|----------------|----------------|-----|-----|------|----------------|
| mm             | mm             | mm             | mm  | mm  | mm   | -              |
| 35             | 13             | 16.5           | 30  | 43  | 5.3  | M6             |
| 42             | 18             | 21             | 38  | 53  | 6.6  | M8             |
| 50             | 22             | 25             | 42  | 60  | 8.4  | M10            |
| 61             | 26             | 30             | 56  | 78  | 10.5 | M12            |
| 70             | 26             | 34             | 64  | 87  | 10.5 | M12            |
| 90             | 34             | 44             | 82  | 108 | 13.5 | M16            |
| 105            | 43             | 49             | 100 | 132 | 17.5 | M20            |

## 13.2.5 Shaft supports LRCB

with mounting holes

| Designation | m    | d  | A   | H  | H <sub>1</sub> |
|-------------|------|----|-----|----|----------------|
|             |      |    |     | mm | mm             |
| -           | kg   | mm | mm  | mm | mm             |
| LRCB 12     | 0.44 | 12 | 40  | 22 | 5              |
| LRCB 16     | 0.55 | 16 | 45  | 26 | 5              |
| LRCB 20     | 0.80 | 20 | 52  | 32 | 6              |
| LRCB 25     | 0.90 | 25 | 57  | 36 | 6              |
| LRCB 30     | 1.13 | 30 | 69  | 42 | 7              |
| LRCB 40     | 1.60 | 40 | 73  | 50 | 8              |
| LRCB 50     | 2.10 | 50 | 84  | 60 | 9              |
| LRCB 60     | 2.37 | 60 | 94  | 68 | 10             |
| LRCB 80     | 4.90 | 80 | 116 | 86 | 12             |




| J   | J <sub>1</sub> | M    | N   | N <sub>1</sub> | β  | Shaft locating screw |
|-----|----------------|------|-----|----------------|----|----------------------|
| mm  | mm             | mm   | mm  | mm             | °  | -                    |
| 75  | 29             | 5.8  | 4.5 | 4.5            | 50 | M4×16                |
| 100 | 33             | 7    | 5.5 | 5.5            | 50 | M5×20                |
| 100 | 37             | 8.3  | 6.6 | 6.6            | 50 | M6×25                |
| 120 | 42             | 10.8 | 6.6 | 9              | 50 | M8×25                |
| 150 | 51             | 11   | 9   | 11             | 50 | M10×30               |
| 200 | 55             | 15   | 9   | 11             | 50 | M10×35               |
| 200 | 63             | 19   | 11  | 13             | 46 | M12×40               |
| 300 | 72             | 25   | 11  | 15.5           | 46 | M14×45               |
| 300 | 92             | 34   | 13  | 17.5           | 46 | M16×55               |

## 13.2.6 Shaft supports LRCC

without mounting holes

| Designation | m    | d  | A   | H  |
|-------------|------|----|-----|----|
| -           | kg   | mm | mm  | mm |
| LRCC 12     | 0.46 | 12 | 40  | 22 |
| LRCC 16     | 0.56 | 16 | 45  | 26 |
| LRCC 20     | 0.81 | 20 | 52  | 32 |
| LRCC 25     | 0.92 | 25 | 57  | 36 |
| LRCC 30     | 1.18 | 30 | 69  | 42 |
| LRCC 40     | 1.62 | 40 | 73  | 50 |
| LRCC 50     | 2.16 | 50 | 84  | 60 |
| LRCC 60     | 2.41 | 60 | 94  | 68 |
| LRCC 80     | 4.99 | 80 | 116 | 86 |



| $H_1$ | $M$  | $N_1$ | $\beta$ |
|-------|------|-------|---------|
| mm    | mm   | mm    | °       |
| 5     | 5.8  | 4.5   | 50      |
| 5     | 7    | 5.5   | 50      |
| 6     | 8.3  | 6.6   | 50      |
| 6     | 10.8 | 9     | 50      |
| 7     | 11   | 11    | 50      |
| 8     | 15   | 11    | 50      |
| 9     | 19   | 13    | 46      |
| 10    | 25   | 15.5  | 46      |
| 12    | 34   | 17.5  | 46      |

## 14 Precision steel shafts

Precision steel shafts are high-quality linear guide components designed for use with linear ball bearings. They offer exceptional dimensional stability and a long service life.

The shafts are induction-hardened, ground round steel bars dimensionally matched to the linear ball bearings. The tolerances of the precision steel shafts have a direct influence on the operating clearance of a linear bearing system, while the shaft hardness plays a key role in the rating life calculation. Since the shaft effectively serves as the inner ring of the linear bearing, its quality is critical to the reliability and service life of machines and systems.

The precision steel shaft range includes a suitable product for almost every linear ball bearing application in terms of material, dimensions, and design. To ensure the best possible service and high availability, shafts are pre-manufactured in long lengths. Standard shaft machining options have been defined under the designation ESSC (Standard Shaft Configurations) to ensure straightforward product selection and order processing.

### 14.1 Product design

■23 Product design

| Designation | Type         | Material                                              | Steel designation <sup>1)</sup> | Steel designation | Hardness |
|-------------|--------------|-------------------------------------------------------|---------------------------------|-------------------|----------|
|             |              |                                                       | EN                              | AISI              | HRC      |
| LJM         | Solid shaft  | High grade steel                                      | 1.1213                          | 1055              | 62 ± 2   |
| LJMR        | Solid shaft  | High-alloy, corrosion-resistant stainless steel       | 1.4112                          | 440B              | 54 ± 2   |
| LJMS        | Solid shaft  | Corrosion-resistant stainless steel                   | 1.4034                          | 420               | 53 ± 2   |
| LJMH        | Solid shaft  | High grade steel, hard-chromium-plated, approx. 10 µm | 1.1213                          | 1055              | 62 ± 2   |
| LJT         | Hollow shaft | High grade steel                                      | 1.0601                          | 1060              | 62 ± 2   |

<sup>1)</sup> or equivalent

#### 14.1.1 Shaft hardness and hardness depth

All precision steel shafts are induction hardened. Their hardness depends primarily on the respective material, while the hardness depth is determined by shaft size. Minimum hardness depths have been defined for the individual shaft sizes.

■24 Hardness depth

| Shaft diameter | Min. hardness depth |
|----------------|---------------------|
| mm             | mm                  |
| 3 ... 10       | 0.4                 |
| 12 ... 16      | 0.6                 |
| 20 ... 30      | 0.9                 |
| 40 ... 50      | 1.5                 |
| 60 ... 80      | 2.2                 |

The hardness depth may be larger than the values specified in the table, which affects the machinability of the shafts and should therefore be taken into account. The ends of uncut shafts in production lengths may exhibit deviations in hardness and dimensional accuracy.

#### 14.1.2 Corrosion resistance of shafts and corrosion protection

Most linear ball bearings are available in a corrosion-resistant steel design identified by the suffix HV 6. The shaft range also includes various material options that provide protection against corrosion.

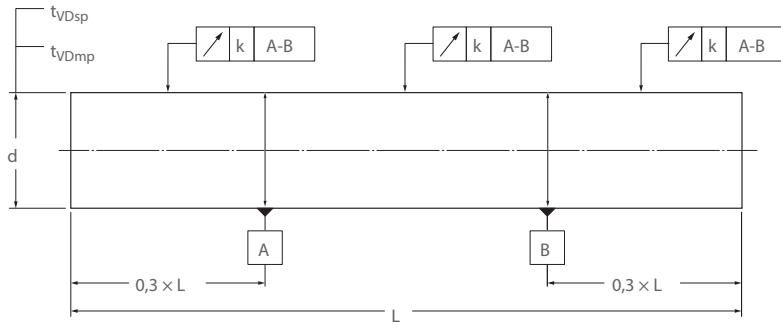
Shafts LJMR are made from high-alloy stainless steel offering high hardness and excellent wear resistance. This material is resistant to moderately aggressive media and ensures long-term corrosion protection combined with a long rating life.

Shafts LJMS are also made from stainless steel, but have lower hardness compared with LJMR. This material provides effective corrosion protection and media resistance at an economical cost.

Hard-chromium-plated shafts LJMH have a high surface hardness as a result of the chromium layer. Only the outside diameter is chromium-plated; no chromium layer is applied to the cut ends of the shaft. This material offers moderate corrosion resistance.

#### Corrosion protection and packaging

14


Precision steel shafts are treated with a corrosion-inhibiting preservative, which must be removed before installation. Depending on their size and quantity, the shafts are shipped in cardboard or wooden boxes that provide optimal protection during transport. Please contact us if special shipping conditions apply, for example in the case of overseas transport.

#### 14.1.3 Tolerances of precision steel shafts

The outside diameters of the precision steel shafts are manufactured to tolerance h6 as standard. Only hard-chromium-plated shafts LJMH are available exclusively in h7 tolerance. The surface roughness Ra of the shafts is 0.3 µm. The dimensional and geometric accuracy values are listed in the respective product tables ►182 | 14.2.2. The r values given in the tables are minimum values. For soft-annealed and machined shaft sections, slight deviations from the dimensional and geometric accuracy values specified in the tables may occur.

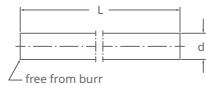
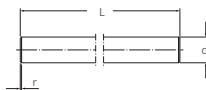
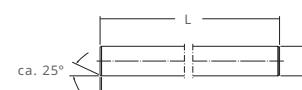
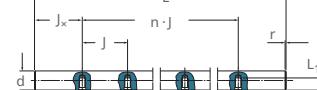
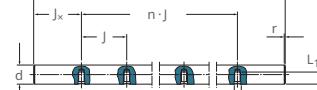
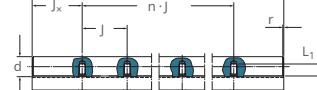
The shaft tolerances are defined in accordance with ISO 13012-1.

## 81 Tolerances



001B732C

## 14.1.4 Machined precision steel shafts







## Standard shaft configurations (ESSC)

For machined shafts, standard configurations have been defined that are widely used in applications with linear ball bearings. These configurations primarily specify the design of the two shaft ends and any radial holes. The relevant standard configuration must be indicated in the shaft order code. For example, the designation for a shaft with a diameter of 20 mm, a length of 1.5 m, and chamfers on both ends is: LJM 20x1500 ESSC 2. For shafts produced to a customer drawing, the suffix ESSC 10 is used in the order code.

## Precision steel shafts with radial thread

For open linear ball bearings, shafts with radial threads are required which are mounted on shaft supports. To simplify documentation and define the connection of shafts and shaft supports, a design standard has been established for the radial thread and spacing. Radial threads can be provided either to match the shaft supports (suffix ESSC 6) or according to customer specifications (suffix ESSC 7). When designing your own shafts, use the thread size and thread depth values specified in the adjacent tables. Shafts with radial threads are not annealed at the drilled locations. The thread is introduced into the hardened and ground shaft to prevent any adverse changes in the shaft's hardness and dimensional accuracy.

## 25 Standard shaft configurations (ESSC)

| ESSC | Characteristics                                                                                                                                                                                                                                                                                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    |  <p>Shaft cut to length and deburred<br/>Length tolerance <math>\pm 1.5</math> mm</p>                                                                                                                                                                                                             |
| 2    |  <p>Shaft cut to length with chamfer<br/>Chamfer with value <math>r</math> of at least 1 mm<br/>Length tolerance <math>\pm 1.5</math> mm</p>                                                                                                                                                      |
| 3    |  <p>Shaft cut to length with approx. <math>25^\circ</math> chamfer<br/>Machined <math>90^\circ</math> end faces<br/>Length tolerance <math>\pm 0.1</math> mm up to 3 m length<br/>Chamfer with value <math>r</math></p>                                                                           |
| 4    |  <p>Shaft cut to length with chamfer<br/>Machined <math>90^\circ</math> end faces<br/>Length tolerance <math>\pm 0.1</math> mm up to 3 m length<br/>Chamfer with value <math>r</math><br/>1 Axial thread in accordance with table</p>                                                             |
| 5    |  <p>Shaft cut to length with chamfer<br/>Machined <math>90^\circ</math> end faces<br/>Length tolerance <math>\pm 0.1</math> mm up to 3 m length<br/>Chamfer with value <math>r</math><br/>2 Axial thread</p>                                                                                      |
| 6    |  <p>Shaft cut to length with chamfer<br/>Chamfer with value <math>r</math> of at least 1 mm<br/>Length tolerance <math>\pm 1.5</math> mm<br/>Shaft with radial threads for LRCB shaft supports<br/>First radial thread at <math>J_x = J/2</math></p>                                            |
| 7    |  <p>Shaft cut to length with chamfer<br/>Chamfer with value <math>r</math> of at least 1 mm<br/>Length tolerance <math>\pm 1.5</math> mm<br/>Shaft with radial threads<br/>Dimensions <math>J</math> and <math>J_x</math> according to customer drawing</p>                                     |
| 8    |  <p>Shaft cut to length with chamfer<br/>Chamfer with value <math>r</math> of at least 1 mm<br/>Length tolerance <math>\pm 1.5</math> mm<br/>Shaft with radial threads for LRCB shaft supports<br/>First radial thread at <math>J_x = J/2</math><br/>Shaft mounted on an LRCB shaft support</p> |

26 Dimensions of end-face threads ESSC 4 and ESSC 5

| d<br>mm | G   | L <sub>5</sub><br>mm |
|---------|-----|----------------------|
| 8       | M4  | 10                   |
| 10      | M4  | 10                   |
| 12      | M5  | 12.5                 |
| 14      | M5  | 12.5                 |
| 16      | M6  | 15                   |
| 20      | M8  | 20                   |
| 25      | M10 | 25                   |
| 30      | M10 | 25                   |
| 40      | M12 | 30                   |
| 50      | M16 | 40                   |
| 60      | M20 | 50                   |
| 80      | M24 | 60                   |

27 Dimensions of radial threads for ESSC 6, ESSC 7, and ESSC 8

| d<br>mm | G   | L <sub>1</sub><br>mm | J<br>mm | J <sub>x</sub><br>mm |
|---------|-----|----------------------|---------|----------------------|
| 8       | –   | –                    | –       | –                    |
| 10      | –   | –                    | –       | –                    |
| 12      | M4  | 8                    | 75      | 37.5                 |
| 14      | –   | –                    | –       | –                    |
| 16      | M5  | 9.5                  | 100     | 50                   |
| 20      | M6  | 13                   | 100     | 50                   |
| 25      | M8  | 14                   | 120     | 60                   |
| 30      | M10 | 18                   | 150     | 75                   |
| 40      | M10 | 20                   | 200     | 100                  |
| 50      | M12 | 23                   | 200     | 100                  |
| 60      | M14 | 28                   | 300     | 150                  |
| 80      | M16 | 33                   | 300     | 150                  |

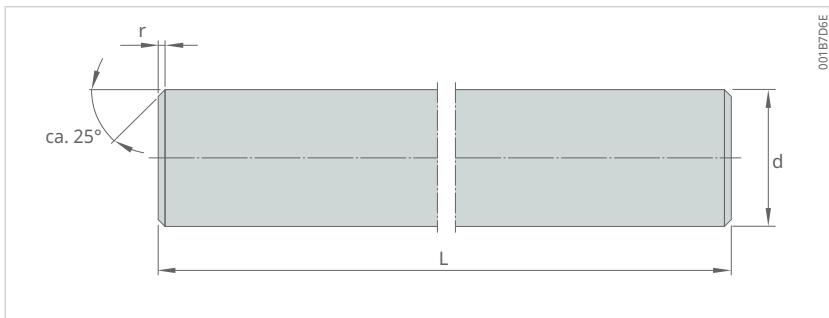
#### 14.1.5 Jointed precision shafts

If shafts longer than 6 m are required, jointed precision shafts can be supplied on request. For unsupported shafts, screw connections are recommended, whereas plug connections are used for supported shafts. Schaeffler ensures the highest machining accuracy at the shaft ends, including precise centering, which is essential for a smooth transition at the shaft joint. For jointed precision shafts, a customer drawing with details and a defined joint design must always be submitted for order processing. The suffix for a customer-specific shaft is ESSC 10.

## 14.2 Product tables

### 14.2.1 Explanations

|                   |                 |                                                                                 |
|-------------------|-----------------|---------------------------------------------------------------------------------|
| A                 | mm <sup>2</sup> | Cross-sectional area                                                            |
| d                 | mm              | Outside diameter                                                                |
| d <sub>1</sub>    | mm              | Inside diameter                                                                 |
| k                 | µm/m            | Radial runout                                                                   |
| L                 | -               | Lower limit dimension                                                           |
| L                 | mm              | Length                                                                          |
| L <sub>max</sub>  | mm              | Maximum length                                                                  |
| m                 | kg/m            | Mass                                                                            |
| M <sub>0I</sub>   | cm <sup>4</sup> | Mass moment of inertia                                                          |
| r                 | mm              | Chamfer                                                                         |
| t <sub>Vdmp</sub> | µm              | Variation of the mean outside diameter over the entire length of a single shaft |
| t <sub>Vdsp</sub> | µm              | Variation of the mean outside diameter within one cross-sectional plane         |
| t <sub>Δds</sub>  | µm              | ISO tolerance field for the shaft outside diameter                              |
| U                 | µm              | Upper limit deviation                                                           |


## 14.2.2 Precision steel shafts

LJM

Solid shafts

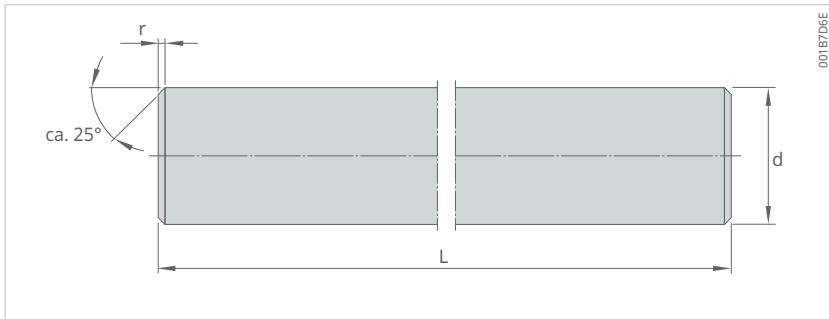
High grade steel

| Designation | m    | d  | r   | L <sub>max</sub> | MoI             |
|-------------|------|----|-----|------------------|-----------------|
|             |      |    |     | mm               | cm <sup>4</sup> |
| -           | kg/m | mm | mm  | mm               | cm <sup>4</sup> |
| LJM 3       | 0.06 | 3  | 0.4 | 1000             | 0.0004          |
| LJM 4       | 0.1  | 4  | 0.4 | 3000             | 0.0013          |
| LJM 5       | 0.15 | 5  | 0.8 | 3000             | 0.0031          |
| LJM 6       | 0.22 | 6  | 0.8 | 3000             | 0.0064          |
| LJM 8       | 0.39 | 8  | 0.8 | 3000             | 0.02            |
| LJM 10      | 0.62 | 10 | 0.8 | 3000             | 0.049           |
| LJM 12      | 0.89 | 12 | 1   | 6000             | 0.102           |
| LJM 14      | 1.21 | 14 | 1   | 6000             | 0.189           |
| LJM 16      | 1.58 | 16 | 1   | 6000             | 0.322           |
| LJM 20      | 2.47 | 20 | 1.5 | 6000             | 0.785           |
| LJM 25      | 3.86 | 25 | 1.5 | 6000             | 1.92            |
| LJM 30      | 5.55 | 30 | 1.5 | 6000             | 3.98            |
| LJM 40      | 9.86 | 40 | 2   | 6000             | 12.6            |
| LJM 50      | 15.4 | 50 | 2   | 6000             | 30.7            |
| LJM 60      | 22.2 | 60 | 2.5 | 6000             | 63.6            |
| LJM 80      | 39.5 | 80 | 2.5 | 6000             | 201             |



Solid shaft in accordance with ESSC3

| A<br>mm <sup>2</sup> | t <sub>Δds</sub><br>h6 |         | t <sub>VDsp</sub><br>h6 | t <sub>VDmp</sub><br>h6 | k<br>h6 |
|----------------------|------------------------|---------|-------------------------|-------------------------|---------|
|                      | U<br>μm                | L<br>μm |                         |                         |         |
| 7.1                  | 0                      | -6      | 3                       | 4                       | 150     |
| 12.6                 | 0                      | -8      | 4                       | 5                       | 150     |
| 19.6                 | 0                      | -8      | 4                       | 5                       | 150     |
| 28.3                 | 0                      | -8      | 4                       | 5                       | 150     |
| 50.3                 | 0                      | -9      | 4                       | 6                       | 120     |
| 78.5                 | 0                      | -9      | 4                       | 6                       | 120     |
| 113                  | 0                      | -11     | 5                       | 8                       | 100     |
| 154                  | 0                      | -11     | 5                       | 8                       | 120     |
| 201                  | 0                      | -11     | 5                       | 8                       | 100     |
| 314                  | 0                      | -13     | 6                       | 9                       | 100     |
| 491                  | 0                      | -13     | 6                       | 9                       | 100     |
| 707                  | 0                      | -13     | 6                       | 9                       | 100     |
| 1260                 | 0                      | -16     | 7                       | 11                      | 100     |
| 1960                 | 0                      | -16     | 7                       | 11                      | 100     |
| 2830                 | 0                      | -19     | 8                       | 13                      | 100     |
| 5030                 | 0                      | -19     | 8                       | 13                      | 100     |


## 14.2.3 Precision steel shafts

## LJMR

## Solid shafts

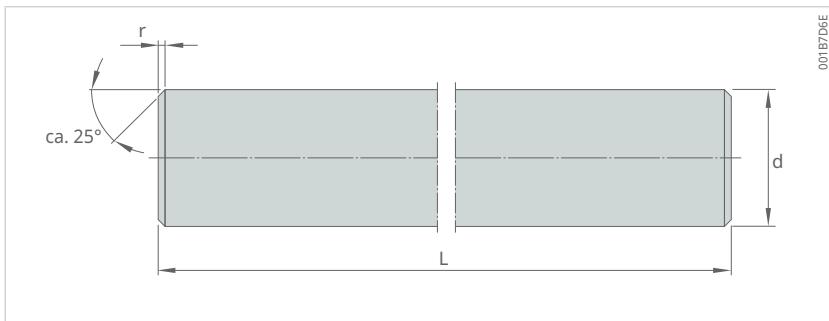
High-alloy, corrosion-resistant stain-  
less steel

| Designation    | m    | d  | r   | L <sub>max</sub> | MoI             |
|----------------|------|----|-----|------------------|-----------------|
|                |      |    |     | mm               | cm <sup>4</sup> |
| -              | kg/m | mm | mm  | mm               | cm <sup>4</sup> |
| <b>LJMR 3</b>  | 0.06 | 3  | 0.4 | 300              | 0.0004          |
| <b>LJMR 4</b>  | 0.1  | 4  | 0.4 | 3000             | 0.0013          |
| <b>LJMR 5</b>  | 0.15 | 5  | 0.8 | 3000             | 0.0031          |
| <b>LJMR 6</b>  | 0.22 | 6  | 0.8 | 3000             | 0.0064          |
| <b>LJMR 8</b>  | 0.39 | 8  | 0.8 | 3000             | 0.02            |
| <b>LJMR 10</b> | 0.62 | 10 | 0.8 | 3000             | 0.049           |
| <b>LJMR 12</b> | 0.89 | 12 | 1   | 6000             | 0.102           |
| <b>LJMR 14</b> | 1.21 | 14 | 1   | 6000             | 0.189           |
| <b>LJMR 16</b> | 1.58 | 16 | 1   | 6000             | 0.322           |
| <b>LJMR 20</b> | 2.47 | 20 | 1.5 | 6000             | 0.785           |
| <b>LJMR 25</b> | 3.86 | 25 | 1.5 | 6000             | 1.92            |
| <b>LJMR 30</b> | 5.55 | 30 | 1.5 | 6000             | 3.98            |
| <b>LJMR 40</b> | 9.86 | 40 | 2   | 6000             | 12.6            |
| <b>LJMR 50</b> | 15.4 | 50 | 2   | 6000             | 30.7            |
| <b>LJMR 60</b> | 22.2 | 60 | 2.5 | 6000             | 63.6            |



Solid shaft in accordance with ESSC3

| A<br>mm <sup>2</sup> | t <sub>Δds</sub><br>h6 |         | t <sub>VDsp</sub><br>h6 | t <sub>VDmp</sub><br>h6 | k<br>h6 |
|----------------------|------------------------|---------|-------------------------|-------------------------|---------|
|                      | U<br>μm                | L<br>μm |                         |                         |         |
| 7.1                  | 0                      | -6      | 3                       | 4                       | 150     |
| 12.6                 | 0                      | -8      | 4                       | 5                       | 150     |
| 19.6                 | 0                      | -8      | 4                       | 5                       | 150     |
| 28.3                 | 0                      | -8      | 4                       | 5                       | 150     |
| 50.3                 | 0                      | -9      | 4                       | 6                       | 120     |
| 78.5                 | 0                      | -9      | 4                       | 6                       | 120     |
| 113                  | 0                      | -11     | 5                       | 8                       | 100     |
| 154                  | 0                      | -11     | 5                       | 8                       | 120     |
| 201                  | 0                      | -11     | 5                       | 8                       | 100     |
| 314                  | 0                      | -13     | 6                       | 9                       | 100     |
| 491                  | 0                      | -13     | 6                       | 9                       | 100     |
| 707                  | 0                      | -13     | 6                       | 9                       | 100     |
| 1260                 | 0                      | -16     | 7                       | 11                      | 100     |
| 1960                 | 0                      | -16     | 7                       | 11                      | 100     |
| 2830                 | 0                      | -19     | 8                       | 13                      | 100     |


## 14.2.4 Precision steel shafts

LJMS

Solid shafts

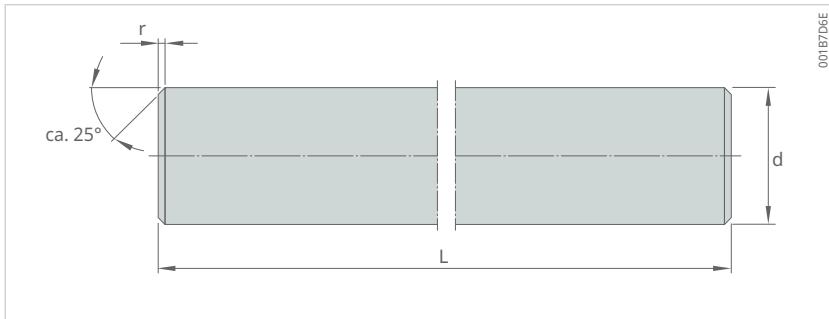
Corrosion-resistant stainless steel

| Designation | m    | d  | r   | L <sub>max</sub> | MoI             |
|-------------|------|----|-----|------------------|-----------------|
|             |      |    |     | ±1.5             | cm <sup>4</sup> |
| -           | kg/m | mm | mm  | mm               |                 |
| LJMS 6      | 0.22 | 6  | 0.8 | 3000             | 0.0064          |
| LJMS 8      | 0.39 | 8  | 0.8 | 3000             | 0.02            |
| LJMS 10     | 0.62 | 10 | 0.8 | 3000             | 0.049           |
| LJMS 12     | 0.89 | 12 | 1   | 6000             | 0.102           |
| LJMS 14     | 1.21 | 14 | 1   | 6000             | 0.189           |
| LJMS 16     | 1.58 | 16 | 1   | 6000             | 0.322           |
| LJMS 20     | 2.47 | 20 | 1.5 | 6000             | 0.785           |
| LJMS 25     | 3.86 | 25 | 1.5 | 6000             | 1.92            |
| LJMS 30     | 5.55 | 30 | 1.5 | 6000             | 3.98            |
| LJMS 40     | 9.86 | 40 | 2   | 6000             | 12.6            |
| LJMS 50     | 15.4 | 50 | 2   | 6000             | 30.7            |
| LJMS 60     | 22.2 | 60 | 2.5 | 6000             | 63.6            |



Solid shaft in accordance with ESSC3

| A<br>mm <sup>2</sup> | t <sub>Δds</sub><br>h6 |         | t <sub>VDsp</sub><br>h6 | t <sub>VDmp</sub><br>h6 | k<br>h6 |
|----------------------|------------------------|---------|-------------------------|-------------------------|---------|
|                      | U<br>μm                | L<br>μm |                         |                         |         |
| 28.3                 | 0                      | -8      | 4                       | 5                       | 150     |
| 50.3                 | 0                      | -9      | 4                       | 6                       | 120     |
| 78.5                 | 0                      | -9      | 4                       | 6                       | 120     |
| 113                  | 0                      | -11     | 5                       | 8                       | 100     |
| 154                  | 0                      | -11     | 5                       | 8                       | 120     |
| 201                  | 0                      | -11     | 5                       | 8                       | 100     |
| 314                  | 0                      | -13     | 6                       | 9                       | 100     |
| 491                  | 0                      | -13     | 6                       | 9                       | 100     |
| 707                  | 0                      | -13     | 6                       | 9                       | 100     |
| 1260                 | 0                      | -16     | 7                       | 11                      | 100     |
| 1960                 | 0                      | -16     | 7                       | 11                      | 100     |
| 2830                 | 0                      | -19     | 8                       | 13                      | 100     |


## 14.2.5 Precision steel shafts

## LJMH

## Solid shafts

High grade steel, hard-chromium-plated

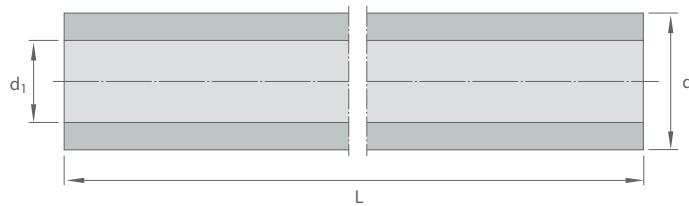
| Designation | m    | d  | r   | L <sub>max</sub> | MoI             |
|-------------|------|----|-----|------------------|-----------------|
|             |      |    |     | ±1.5             |                 |
| -           | kg/m | mm | mm  | mm               | cm <sup>4</sup> |
| LJMH 5      | 0.15 | 5  | 0.8 | 3000             | 0.0031          |
| LJMH 6      | 0.22 | 6  | 0.8 | 3000             | 0.0064          |
| LJMH 8      | 0.39 | 8  | 0.8 | 3000             | 0.02            |
| LJMH 10     | 0.62 | 10 | 0.8 | 3000             | 0.049           |
| LJMH 12     | 0.89 | 12 | 1   | 6000             | 0.102           |
| LJMH 14     | 1.21 | 14 | 1   | 6000             | 0.189           |
| LJMH 16     | 1.58 | 16 | 1   | 6000             | 0.322           |
| LJMH 20     | 2.47 | 20 | 1.5 | 6000             | 0.785           |
| LJMH 25     | 3.86 | 25 | 1.5 | 6000             | 1.92            |
| LJMH 30     | 5.55 | 30 | 1.5 | 6000             | 3.98            |
| LJMH 40     | 9.86 | 40 | 2   | 6000             | 12.6            |
| LJMH 50     | 15.4 | 50 | 2   | 6000             | 30.7            |
| LJMH 60     | 22.2 | 60 | 2.5 | 6000             | 63.6            |
| LJMH 80     | 39.5 | 80 | 2.5 | 6000             | 201             |



Solid shaft in accordance with ESSC3

| A<br>mm <sup>2</sup> | t <sub>Δds</sub><br>h7 |         | t <sub>VDsp</sub><br>h7 | t <sub>VDmp</sub><br>h7 | k<br>h7 |
|----------------------|------------------------|---------|-------------------------|-------------------------|---------|
|                      | U<br>μm                | L<br>μm |                         |                         |         |
| 19.6                 | 0                      | -12     | 5                       | 8                       | 150     |
| 28.3                 | 0                      | -12     | 5                       | 8                       | 150     |
| 50.3                 | 0                      | -15     | 6                       | 9                       | 120     |
| 78.5                 | 0                      | -15     | 6                       | 9                       | 120     |
| 113                  | 0                      | -18     | 8                       | 11                      | 100     |
| 154                  | 0                      | -18     | 8                       | 11                      | 120     |
| 201                  | 0                      | -18     | 8                       | 11                      | 100     |
| 314                  | 0                      | -21     | 9                       | 13                      | 100     |
| 491                  | 0                      | -21     | 9                       | 13                      | 100     |
| 707                  | 0                      | -21     | 9                       | 13                      | 100     |
| 1260                 | 0                      | -25     | 11                      | 16                      | 100     |
| 1960                 | 0                      | -25     | 11                      | 16                      | 100     |
| 2830                 | 0                      | -30     | 13                      | 19                      | 100     |
| 5030                 | 0                      | -30     | 13                      | 19                      | 100     |

## 14.2.6 Precision steel shafts


LJT

Hollow shafts

High grade steel

| Designation | m     | d  | d <sub>1</sub> <sup>1)</sup> | r   | L <sub>max</sub> | MoI             | ±1.5 |
|-------------|-------|----|------------------------------|-----|------------------|-----------------|------|
|             |       |    |                              |     |                  |                 | kg/m |
| mm          | mm    | mm | mm                           | mm  | mm               | cm <sup>4</sup> | mm   |
| -           | kg/m  | mm | mm                           | mm  | mm               | cm <sup>4</sup> | mm   |
| LJT 12      | 0.79  | 12 | 4                            | 1   | 6000             | 0.1             |      |
| LJT 16      | 1.28  | 16 | 7                            | 1   | 6000             | 0.31            |      |
| LJT 20      | 1.25  | 20 | 14                           | 1.5 | 6000             | 0.597           |      |
| LJT 25      | 2.35  | 25 | 16                           | 1.5 | 6000             | 1.64            |      |
| LJT 30      | 3.5   | 30 | 18                           | 1.5 | 6000             | 3.46            |      |
| LJT 40      | 4.99  | 40 | 28                           | 2   | 6000             | 9.96            |      |
| LJT 50      | 9.91  | 50 | 30                           | 2   | 6000             | 27.7            |      |
| LJT 60      | 14.2  | 60 | 36                           | 2.5 | 6000             | 57.1            |      |
| LJT 80      | 19.43 | 80 | 57                           | 2.5 | 6000             | 153             |      |

<sup>1)</sup> For sizes 25, 30, 40: d<sub>1</sub> may deviate from the specified value. Contact Schaeffler if necessary.



Hollow shaft LJT in accordance with ESSC1

| A<br>$\text{mm}^2$ | $t_{\Delta ds}$<br>h6 |                    | $t_{VDsp}$<br>h6 | $t_{VDmp}$<br>h6 | k<br>h6 |
|--------------------|-----------------------|--------------------|------------------|------------------|---------|
|                    | U<br>$\mu\text{m}$    | L<br>$\mu\text{m}$ |                  |                  |         |
| 101                | 0                     | -11                | 5                | 8                | 100     |
| 163                | 0                     | -11                | 5                | 8                | 100     |
| 160                | 0                     | -13                | 6                | 9                | 100     |
| 305                | 0                     | -13                | 6                | 9                | 100     |
| 453                | 0                     | -13                | 6                | 9                | 100     |
| 685                | 0                     | -16                | 7                | 11               | 100     |
| 1350               | 0                     | -16                | 7                | 11               | 100     |
| 1920               | 0                     | -19                | 8                | 13               | 100     |
| 2565               | 0                     | -19                | 8                | 13               | 100     |

# 15 Standard housings

## 15.1 Product design

Linear ball bearings must be mounted in housings for proper operation. The individual lightweight aluminum housings are finish-machined and can be fitted with bearings of the standard range. The high-quality design provides a defined reference side for linear alignment. The housing bore  $D_a$  for accommodating the linear bearing is manufactured to tolerance J6. Depending on the application, various flexible mounting and fastening options are available, with the housings optimized for mounting with hexagon socket head cap screws in accordance with DIN ISO 4762. Axial and radial bearing fixation corresponds to ISO standard bearings. Each housing is supplied with a grease fitting for bearing fixation. Three housing variants are available.

### 15.1.1 Closed housings

Linear bearing housings LHCR in closed design are available for standard bearings in sizes from 8 mm to 80 mm. They allow simple mounting from above or below and feature a reference side for linear alignment. The bearing is fixed via the grease fitting, which also serves for relubrication, except for size 8 mm.

82 Housings LHCR, LHCS



### 15.1.2 Slotted housings

Linear bearing housings LHCS in slotted design for adjusting the operating clearance are available for standard bearings in sizes 8 mm to 80 mm. They allow simple mounting from above or below and feature a reference side for linear alignment. The bearing is fixed via the grease fitting, which also serves for relubrication, except for size 8 mm.

### 15.1.3 Open housings

Linear bearing housings LHCT in open design are available for standard bearings in sizes from 12 mm to 80 mm. They allow simple mounting from above or below and feature a reference side for linear alignment. The bearing is fixed via the grease fitting, which also serves for relubrication.

When using Schaeffler linear ball bearings LBCT or LBCF, the operating clearance can be adjusted.

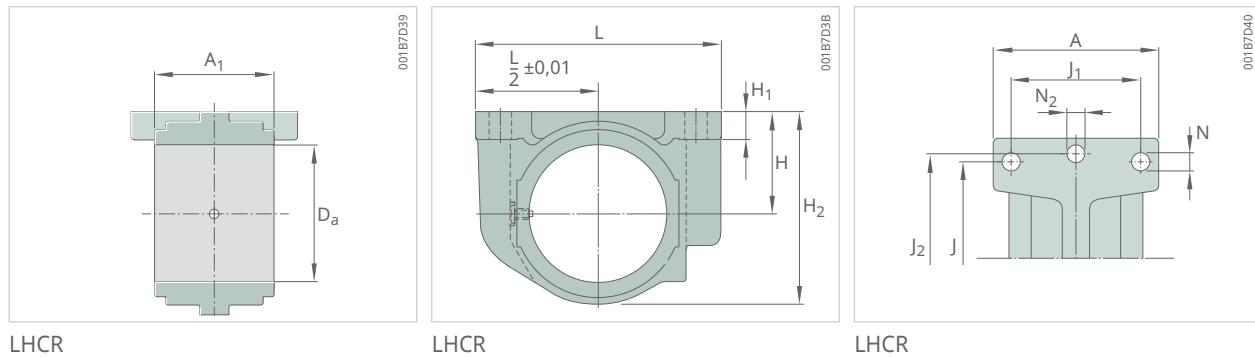
## 83 Housings LHCT



001B70D0

## 15.2 Product tables

## 15.2.1 Explanations


|                |    |               |
|----------------|----|---------------|
| A              | mm | Length        |
| A <sub>1</sub> | mm | Length        |
| D <sub>a</sub> | mm | Bore diameter |
| H              | mm | Center height |
| H <sub>1</sub> | mm | Height        |
| H <sub>2</sub> | mm | Height        |
| J              | mm | Distance      |
| J <sub>1</sub> | mm | Distance      |
| J <sub>2</sub> | mm | Distance      |
| L              | mm | Width         |
| N              | mm | Fixing hole   |
| N <sub>2</sub> | mm | Bore diameter |
| α              | °  | Opening angle |
| β              | °  | Angle         |

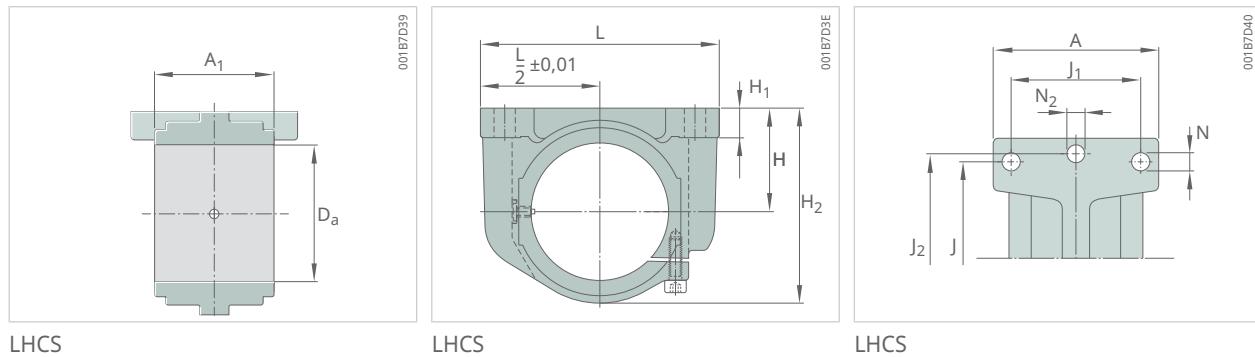
15

## 15.2.2 Linear bearing housings LHCR

| Designation | m    | D <sub>a</sub> | A    | A1  | H     | H <sub>1</sub> | H <sub>2</sub> |
|-------------|------|----------------|------|-----|-------|----------------|----------------|
|             |      |                |      |     | ±0.01 |                |                |
| -           | kg   | mm             | mm   | mm  | mm    | mm             | mm             |
| LHCR 8      | 0.02 | 16             | 27   | 14  | 15    | 5.5            | 28             |
| LHCR 12     | 0.04 | 22             | 31   | 20  | 18    | 6              | 34.5           |
| LHCR 16     | 0.05 | 26             | 34.5 | 22  | 22    | 7              | 40.5           |
| LHCR 20     | 0.10 | 32             | 41   | 28  | 25    | 8              | 48             |
| LHCR 25     | 0.20 | 40             | 52   | 40  | 30    | 10             | 58             |
| LHCR 30     | 0.28 | 47             | 59   | 48  | 35    | 10             | 67             |
| LHCR 40     | 0.47 | 62             | 74   | 56  | 45    | 12             | 85             |
| LHCR 50     | 0.76 | 75             | 66   | 72  | 50    | 14             | 99             |
| LHCR 60     | 1.35 | 90             | 84   | 95  | 60    | 18             | 118            |
| LHCR 80     | 3.25 | 120            | 113  | 125 | 80    | 22             | 158            |

<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02




| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N    | N <sub>2</sub> | Grease fitting |
|-----|----------------|----------------|-----------------|------|----------------|----------------|
| mm  | mm             | mm             | mm              | mm   | mm             | -              |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | -              |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | VN-LHC 20      |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | VN-LHC 20      |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | VN-LHC 20      |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | VN-LHC 40      |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | VN-LHC 40      |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | VN-LHC 40      |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | VN-LHC 50      |
| 132 | 65             | 138            | 160             | 10.5 | 13             | VN-LHC 80      |
| 170 | 90             | 180            | 205             | 13   | 13             | VN-LHC 80      |

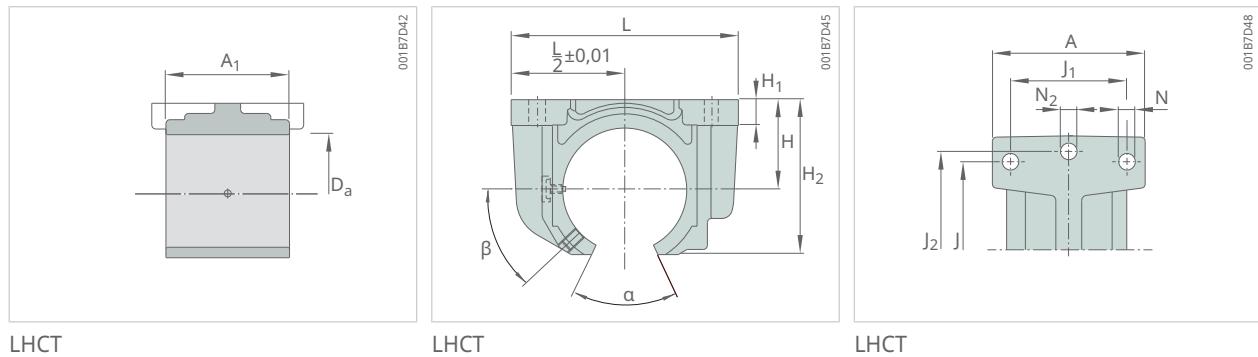
### 15.2.3 Linear bearing housings LHCS

Adjustable operating clearance

| Designation | m    | D <sub>a</sub> | A    | A1  | H  |       | H <sub>1</sub> | H <sub>2</sub> |
|-------------|------|----------------|------|-----|----|-------|----------------|----------------|
|             |      |                |      |     | mm | ±0.01 |                |                |
| -           | kg   | mm             | mm   | mm  | mm | mm    | mm             | mm             |
| LHCS 8      | 0.02 | 16             | 27   | 14  | 15 | 5.5   | 28             |                |
| LHCS 12     | 0.04 | 22             | 31   | 20  | 18 | 6     | 34.5           |                |
| LHCS 16     | 0.05 | 26             | 34.5 | 22  | 22 | 7     | 40.5           |                |
| LHCS 20     | 0.10 | 32             | 41   | 28  | 25 | 8     | 48             |                |
| LHCS 25     | 0.20 | 40             | 52   | 40  | 30 | 10    | 58             |                |
| LHCS 30     | 0.28 | 47             | 59   | 48  | 35 | 10    | 67             |                |
| LHCS 40     | 0.47 | 62             | 74   | 56  | 45 | 12    | 85             |                |
| LHCS 50     | 0.76 | 75             | 66   | 72  | 50 | 14    | 99             |                |
| LHCS 60     | 1.35 | 90             | 84   | 95  | 60 | 18    | 118            |                |
| LHCS 80     | 3.25 | 120            | 113  | 125 | 80 | 22    | 158            |                |

<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02

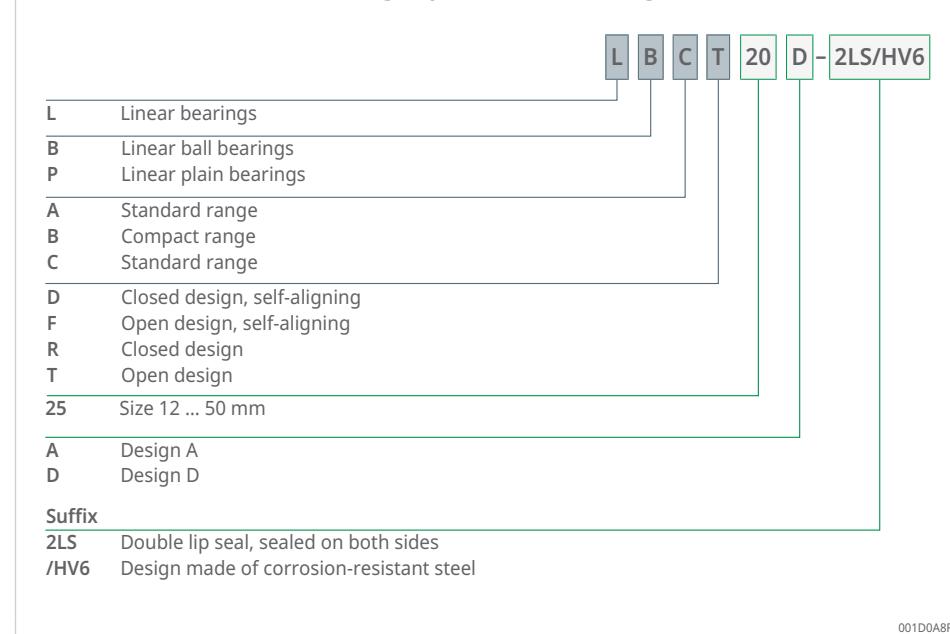



| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N    | N <sub>2</sub> | Adjustment screw | Grease fitting |
|-----|----------------|----------------|-----------------|------|----------------|------------------|----------------|
| mm  | mm             | mm             | mm              | mm   | mm             | -                | -              |
| 25  | 20             | 35             | 45              | 3.2  | 5.3            | M3               | -              |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | M3               | VN-LHC 20      |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | M3               | VN-LHC 20      |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | M4               | VN-LHC 20      |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | M5               | VN-LHC 40      |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | M6               | VN-LHC 40      |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | M6               | VN-LHC 40      |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | M8               | VN-LHC 50      |
| 132 | 65             | 138            | 160             | 10.5 | 13             | M10              | VN-LHC 80      |
| 170 | 90             | 180            | 205             | 13   | 13             | M12              | VN-LHC 80      |

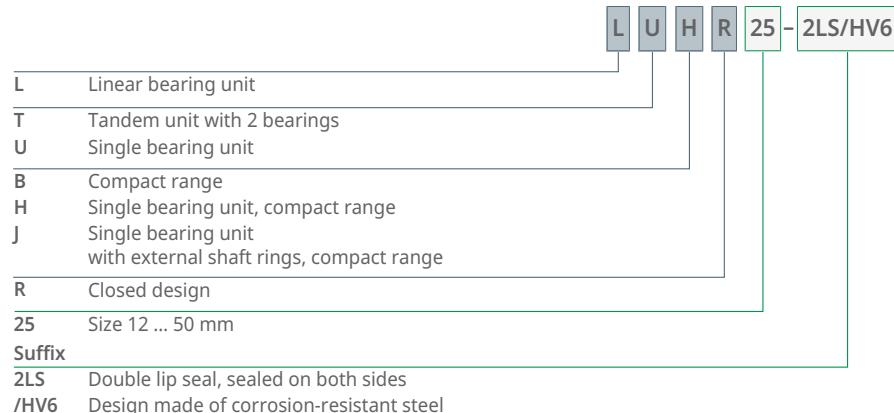
### 15.2.4 Linear bearing housings LHCT

open design

| Designation | m    | D <sub>a</sub> | A    | A1  | H     | H <sub>1</sub> | H <sub>2</sub> |
|-------------|------|----------------|------|-----|-------|----------------|----------------|
|             |      |                |      |     | ±0.01 |                |                |
| -           | kg   | mm             | mm   | mm  | mm    | mm             | mm             |
| LHCT 12 D   | 0.03 | 22             | 31   | 20  | 18    | 6              | 28             |
| LHCT 16 D   | 0.05 | 26             | 34.5 | 22  | 22    | 7              | 35             |
| LHCT 20 D   | 0.09 | 32             | 41   | 28  | 25    | 8              | 42             |
| LHCT 25 D   | 0.18 | 40             | 52   | 40  | 30    | 10             | 51             |
| LHCT 30 D   | 0.25 | 47             | 59   | 48  | 35    | 10             | 60             |
| LHCT 40     | 0.41 | 62             | 74   | 56  | 45    | 12             | 77             |
| LHCT 50     | 0.67 | 75             | 66   | 72  | 50    | 14             | 88             |
| LHCT 60     | 1.18 | 90             | 84   | 95  | 60    | 18             | 105            |
| LHCT 80     | 2.86 | 120            | 113  | 125 | 80    | 22             | 140            |

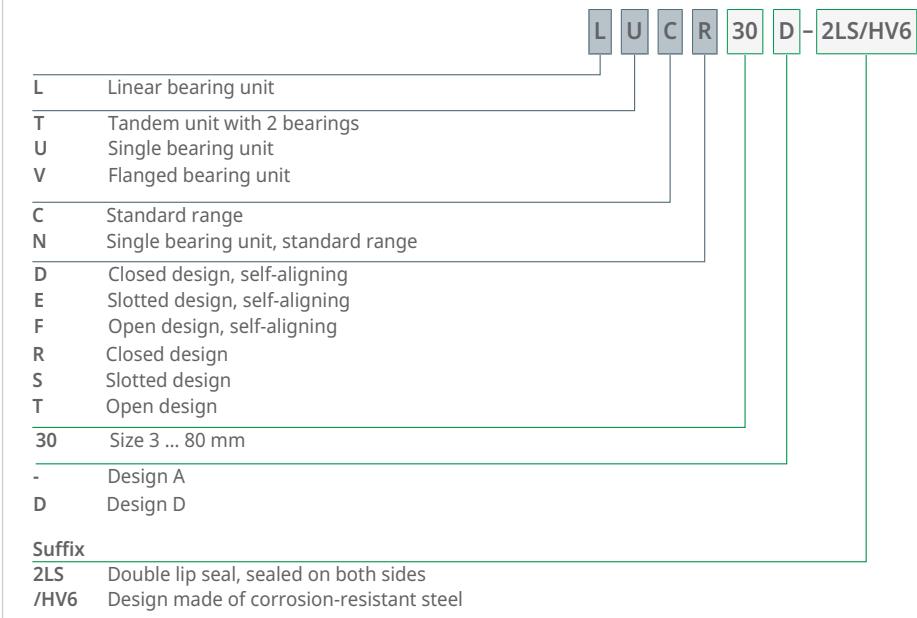

<sup>1)</sup> For sizes 50 to 80: tolerance L/2 ± 0.02




| J   | J <sub>1</sub> | J <sub>2</sub> | L <sup>1)</sup> | N    | N <sub>2</sub> | α  | β    | Grub screw | Grease fitting |
|-----|----------------|----------------|-----------------|------|----------------|----|------|------------|----------------|
| mm  | mm             | mm             | mm              | mm   | mm             | °  | °    | -          | -              |
| 32  | 23             | 42             | 52              | 4.3  | 5.3            | 78 | 29   | M3         | VN-LHC 20      |
| 40  | 26             | 46             | 56              | 4.3  | 5.3            | 78 | 27.6 | M3         | VN-LHC 20      |
| 45  | 32             | 58             | 70              | 4.3  | 6.4            | 60 | 42   | M5         | VN-LHC 20      |
| 60  | 40             | 68             | 80              | 5.3  | 6.4            | 60 | 43   | M5         | VN-LHC 40      |
| 68  | 45             | 76             | 88              | 6.4  | 6.4            | 50 | 43.6 | M5         | VN-LHC 40      |
| 86  | 58             | 94             | 108             | 8.4  | 8.4            | 50 | 30   | M5         | VN-LHC 40      |
| 108 | 50             | 116            | 135             | 8.4  | 10.5           | 50 | 30   | M6         | VN-LHC 50      |
| 132 | 65             | 138            | 160             | 10.5 | 13             | 54 | 30   | M8         | VN-LHC 80      |
| 170 | 90             | 180            | 205             | 13   | 13             | 54 | 30   | M8         | VN-LHC 80      |

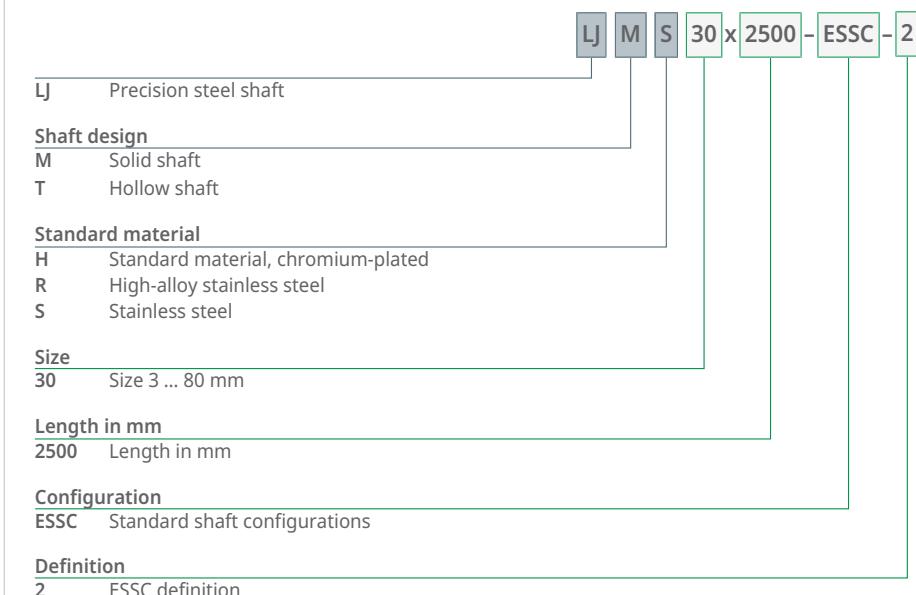
## 16 Structure of the ordering key

84 Structure of the ordering key for linear bearings



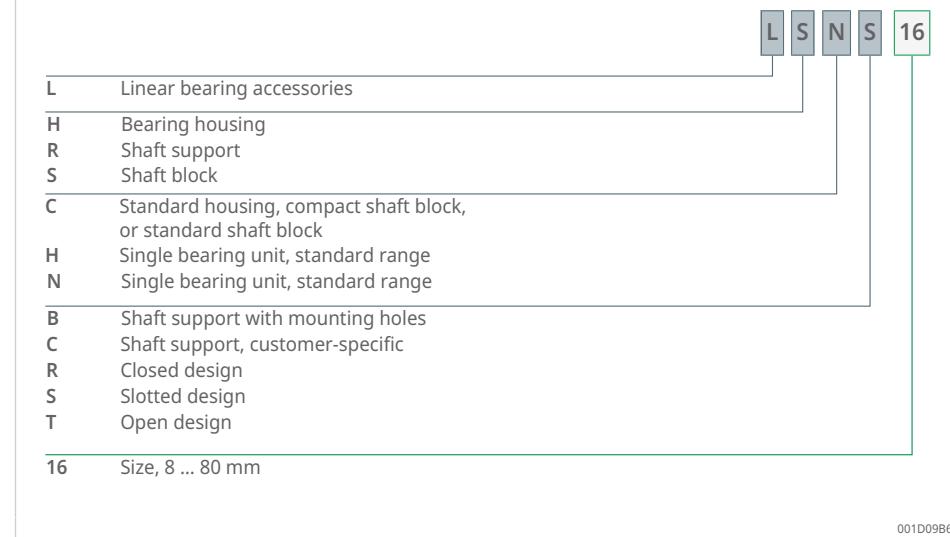

⊕ 85 Structure of the ordering key for linear bearing units of the compact range




001D0A9F

86 Structure of the ordering key for linear bearing units of the standard range




001D0AAF

## ④ 87 Structure of the ordering key for precision steel shafts



001D0A7F

88 Structure of the ordering key for accessories



001D09B6

28 Suffixes

| Designation          | Shields | 2 double lip seals (sealed on both sides) | 1 double lip seal (sealed on one side) | Corrosion-resistant |
|----------------------|---------|-------------------------------------------|----------------------------------------|---------------------|
| Linear ball bearings | -       | 2LS                                       | LS                                     | HV6                 |
| Linear bearing units | -       | 2LS                                       | -                                      | HV6                 |



**Schaeffler Technologies AG & Co. KG**

Georg-Schäfer-Straße 30

97421 Schweinfurt

Germany

[www.schaeffler.de/en](http://www.schaeffler.de/en)

[info.de@schaefller.com](mailto:info.de@schaefller.com)

In Germany:

Phone 0180 5003872

From other countries:

Phone +49 9721 91-0

All information has been carefully compiled and checked by us, but we cannot guarantee complete accuracy. We reserve the right to make corrections. Therefore, please always check whether more up-to-date or amended information is available. This publication supersedes all deviating information from older publications. Printing, including excerpts, is only permitted with our approval. © Schaeffler Technologies AG & Co. KG LB 1 / 02 / en-US / 2025-12